Single-cell sequencing reveals that AK5 inhibits apoptosis in AD oligodendrocytes by regulating the AMPK signaling pathway.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-02-08 DOI:10.1007/s11033-025-10311-x
Shiyun Yang, Bolun Chen, Jiatong Zhang, Xinmei Zhou, Yuanjing Jiang, Wangxia Tong, Jibing Chen, Ning Luo
{"title":"Single-cell sequencing reveals that AK5 inhibits apoptosis in AD oligodendrocytes by regulating the AMPK signaling pathway.","authors":"Shiyun Yang, Bolun Chen, Jiatong Zhang, Xinmei Zhou, Yuanjing Jiang, Wangxia Tong, Jibing Chen, Ning Luo","doi":"10.1007/s11033-025-10311-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuroinflammation and abnormal energy metabolism have been shown to significantly contribute to the progression of Alzheimer's disease (AD). Adenylate kinase 5 (AK5), an enzyme predominantly expressed in the brain regulates ATP metabolism, has an unclear role in energy metabolism and neuroinflammation in AD.</p><p><strong>Methods: </strong>The AD datasets were derived from the GEO public database to analyze the expression levels of AK5 in AD and normal samples and to assess the relationship between AK5 expression and the clinical characteristics of AD patients. Functional enrichment analysis was employed to investigate the effects of changes in AK5 expression on energy metabolism and immunoinflammation in AD, as well as the underlying mechanisms. Moreover, the influence of AK5 expression variations on oligodendrocyte development was assessed, and the predicted outcomes were validated through cellular experiments.</p><p><strong>Results: </strong>Bioinformatic analysis revealed that AK5 was lowly expressed in AD olfactory lobe tissues, accompanied by increased immunoinflammation and apoptosis. Increased expression of AK5 was associated with the activation of AMPK signaling, enhanced oxidative phosphorylation, and overall stimulation of energy metabolism. In oligodendrocytes treated with Aβ1-42, overexpression of AK5 resulted in elevated levels of P-AMPK, SIRT1, and BCL-2 proteins, while reducing the levels of BAX, CASPASE-3, and NF-κB proteins. This modulation activated AMPK signaling, thereby inhibiting neuroinflammation and apoptosis. In contrast, low levels of AK5 expression during early differentiation triggered inflammatory responses and increased apoptosis in oligodendrocytes.</p><p><strong>Conclusion: </strong>AK5 inhibits AD oligodendrocyte apoptosis by activating the AMPK signaling pathway.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"213"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10311-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neuroinflammation and abnormal energy metabolism have been shown to significantly contribute to the progression of Alzheimer's disease (AD). Adenylate kinase 5 (AK5), an enzyme predominantly expressed in the brain regulates ATP metabolism, has an unclear role in energy metabolism and neuroinflammation in AD.

Methods: The AD datasets were derived from the GEO public database to analyze the expression levels of AK5 in AD and normal samples and to assess the relationship between AK5 expression and the clinical characteristics of AD patients. Functional enrichment analysis was employed to investigate the effects of changes in AK5 expression on energy metabolism and immunoinflammation in AD, as well as the underlying mechanisms. Moreover, the influence of AK5 expression variations on oligodendrocyte development was assessed, and the predicted outcomes were validated through cellular experiments.

Results: Bioinformatic analysis revealed that AK5 was lowly expressed in AD olfactory lobe tissues, accompanied by increased immunoinflammation and apoptosis. Increased expression of AK5 was associated with the activation of AMPK signaling, enhanced oxidative phosphorylation, and overall stimulation of energy metabolism. In oligodendrocytes treated with Aβ1-42, overexpression of AK5 resulted in elevated levels of P-AMPK, SIRT1, and BCL-2 proteins, while reducing the levels of BAX, CASPASE-3, and NF-κB proteins. This modulation activated AMPK signaling, thereby inhibiting neuroinflammation and apoptosis. In contrast, low levels of AK5 expression during early differentiation triggered inflammatory responses and increased apoptosis in oligodendrocytes.

Conclusion: AK5 inhibits AD oligodendrocyte apoptosis by activating the AMPK signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
Probiotic intervention and exercise mitigate inflammation and histopathological alterations in the liver of wistar rats on a high-fat diet. A short review: the biological activity of vitamin D and its decomposition products. Inhibiting HSP90 changes the expression pattern of PINK1 and BNIP3 and induces oxidative stress in colon cancer cells. Single-cell sequencing reveals that AK5 inhibits apoptosis in AD oligodendrocytes by regulating the AMPK signaling pathway. Correction: Identification of the novel BRCA1 c.2463_2464delTA mutation in two high grade serous ovarian cancer sisters and potential dosage effects implications: a case report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1