A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators.

IF 13.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-02-08 DOI:10.1093/nar/gkaf058
Sunil Guharajan, Vinuselvi Parisutham, Robert C Brewster
{"title":"A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators.","authors":"Sunil Guharajan, Vinuselvi Parisutham, Robert C Brewster","doi":"10.1093/nar/gkaf058","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf058","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对大肠杆菌中TF功能的系统调查表明,RNAP稳定是抑制因子和激活因子的普遍策略。
转录因子(tf)通常被分类为激活因子或抑制因子,然而这些上下文相关的标签不足以预测在不同启动子中出现的定量特征。由于内源性基因缺乏系统的遗传控制,对不同调控序列如何塑造TF功能的机制理解具有挑战性。为了解决这个问题,我们使用了一个精确控制TF拷贝数的大肠杆菌菌株文库,测量了90个TF对合成启动子的定量调控输入输出函数,这些启动子分离出TF结合序列、位置和基础启动子强度对基因表达的贡献。我们使用基因表达的热力学模型解释了这些tf的测量调节,并揭示了RNA聚合酶的稳定作为一个普遍的调节机制,共同激活和抑制tf。这一特性提示了通过稳定TF功能和RNA聚合酶基础占用的相互作用来调整基因表达动态范围的方法,我们通过测量超过100倍基础表达的合成启动子序列中稳定TF的折叠变化来证实这一现象。我们的工作在机制层面上解构了TF的功能,提供了基因表达如何在不同启动子上下文中实现的基本原理,对解码序列和基因表达之间的关系具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
High-throughput measurement and prediction of the i-motif DNA stability landscape AquIRE reveals the mechanisms of clinically induced RNA damage and the conservation and dynamics of glycoRNAs. Anticodon-edited transfer RNAs (ACE-tRNAs) encoded as therapeutic nonviral minimal DNA vectors. Dual-single-guide RNA strategy improves CRISPR-mediated homology-directed repair in Aspergillus. Exploring the regulatory potential of RNA structures in 202 cyanobacterial genomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1