Elevated reactive oxygen species can drive the alternative lengthening of telomeres pathway in ATRX-null cancers.

IF 13.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-02-08 DOI:10.1093/nar/gkaf061
Tomas Goncalves, Siobhan Cunniffe, Tiffany S Ma, Natalie Mattis, Andrew W Rose, Thomas Kent, David R Mole, Helene E B Geiller, Linda van Bijsterveldt, Timothy C Humphrey, Ester M Hammond, Richard J Gibbons, David Clynes, Anna M Rose
{"title":"Elevated reactive oxygen species can drive the alternative lengthening of telomeres pathway in ATRX-null cancers.","authors":"Tomas Goncalves, Siobhan Cunniffe, Tiffany S Ma, Natalie Mattis, Andrew W Rose, Thomas Kent, David R Mole, Helene E B Geiller, Linda van Bijsterveldt, Timothy C Humphrey, Ester M Hammond, Richard J Gibbons, David Clynes, Anna M Rose","doi":"10.1093/nar/gkaf061","DOIUrl":null,"url":null,"abstract":"<p><p>The alternative lengthening of telomeres (ALT) pathway is a telomerase-independent mechanism for immortalization in cancer cells and is commonly activated in low-grade and high-grade glioma, as well as osteosarcoma. The ALT pathway can be activated under various conditions and has often been shown to include mutational loss of ATRX. However, this is insufficient in isolation and so other cellular event must also be implicated. It has been shown that excessive accumulation of DNA:RNA hybrid structures (R-loops) and/or formation of DNA-protein crosslinks (DPCs) can be other important driving factors. The underlying cellular events leading to R-loop and DPC formation in ALT cancer cells to date remain unclear. Here, we demonstrate that excessive cellular reactive oxygen species (ROS) is an important causative factor in the evolution of ALT-telomere maintenance in ATRX-deficient glioma. We identified three sources of elevated ROS in ALT-positive gliomas: co-mutation of SETD2, downregulation of DRG2, and hypoxic tumour microenvironment. We demonstrate that elevated ROS leads to accumulation of R-loops and, crucially, resolution of R-loops by the enzyme RNase H1 prevents ALT pathway activity in cells exposed to elevated ROS. Further, we found a possible causal link between the formation of R-loops and the accumulation of DPCs, in particular, formation of TOP1 complexes covalently linked to DNA (Top1cc). We also demonstrate that elevation of ROS can trigger over-activity of the ALT pathway in osteosarcoma and glioma cell lines, resulting in excessive DNA damage and cell death. This work presents important mechanistic insights into the endogenous origin of excessive R-loops and DPCs in ALT-positive cancers, as well as highlighting potential novel therapeutic approaches in these difficult-to-treat cancer types.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 4","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The alternative lengthening of telomeres (ALT) pathway is a telomerase-independent mechanism for immortalization in cancer cells and is commonly activated in low-grade and high-grade glioma, as well as osteosarcoma. The ALT pathway can be activated under various conditions and has often been shown to include mutational loss of ATRX. However, this is insufficient in isolation and so other cellular event must also be implicated. It has been shown that excessive accumulation of DNA:RNA hybrid structures (R-loops) and/or formation of DNA-protein crosslinks (DPCs) can be other important driving factors. The underlying cellular events leading to R-loop and DPC formation in ALT cancer cells to date remain unclear. Here, we demonstrate that excessive cellular reactive oxygen species (ROS) is an important causative factor in the evolution of ALT-telomere maintenance in ATRX-deficient glioma. We identified three sources of elevated ROS in ALT-positive gliomas: co-mutation of SETD2, downregulation of DRG2, and hypoxic tumour microenvironment. We demonstrate that elevated ROS leads to accumulation of R-loops and, crucially, resolution of R-loops by the enzyme RNase H1 prevents ALT pathway activity in cells exposed to elevated ROS. Further, we found a possible causal link between the formation of R-loops and the accumulation of DPCs, in particular, formation of TOP1 complexes covalently linked to DNA (Top1cc). We also demonstrate that elevation of ROS can trigger over-activity of the ALT pathway in osteosarcoma and glioma cell lines, resulting in excessive DNA damage and cell death. This work presents important mechanistic insights into the endogenous origin of excessive R-loops and DPCs in ALT-positive cancers, as well as highlighting potential novel therapeutic approaches in these difficult-to-treat cancer types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在无atrx的癌症中,活性氧的升高可以驱动端粒途径的选择性延长。
端粒选择性延长(ALT)途径是一种不依赖端粒酶的癌细胞永生化机制,通常在低级别和高级别胶质瘤以及骨肉瘤中被激活。ALT通路可以在各种条件下被激活,并且经常被证明包括ATRX的突变丢失。然而,这在孤立情况下是不够的,因此其他细胞事件也必须涉及。研究表明,DNA:RNA杂交结构(r -loop)的过度积累和/或DNA-蛋白交联(DPCs)的形成可能是其他重要的驱动因素。迄今为止,ALT癌细胞中导致R-loop和DPC形成的潜在细胞事件尚不清楚。在这里,我们证明了过量的细胞活性氧(ROS)是atrx缺陷胶质瘤中alt -端粒维持进化的重要致病因素。我们确定了alt阳性胶质瘤中ROS升高的三个来源:SETD2的共突变、DRG2的下调和缺氧的肿瘤微环境。我们证明,升高的ROS导致r环的积累,关键是,在暴露于升高的ROS的细胞中,RNase H1酶对r环的分解阻止了ALT途径的活性。此外,我们发现r环的形成与DPCs的积累之间可能存在因果关系,特别是与DNA共价连接的TOP1复合物(Top1cc)的形成。我们还证明,ROS的升高可以触发骨肉瘤和胶质瘤细胞系中ALT通路的过度活性,导致过度的DNA损伤和细胞死亡。这项工作为alt阳性癌症中过量r环和DPCs的内源性起源提供了重要的机制见解,并突出了这些难以治疗的癌症类型的潜在新治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
High-throughput measurement and prediction of the i-motif DNA stability landscape AquIRE reveals the mechanisms of clinically induced RNA damage and the conservation and dynamics of glycoRNAs. Anticodon-edited transfer RNAs (ACE-tRNAs) encoded as therapeutic nonviral minimal DNA vectors. Dual-single-guide RNA strategy improves CRISPR-mediated homology-directed repair in Aspergillus. Exploring the regulatory potential of RNA structures in 202 cyanobacterial genomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1