A novel high-throughput screen identifies phenazine-1-carboxylic acid as an inhibitor of African swine fever virus replication in primary porcine alveolar macrophages.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES Veterinary Research Pub Date : 2025-02-08 DOI:10.1186/s13567-025-01467-2
Jing Lan, Rui Luo, Di Liu, Changxing Qi, Xin Song, Zhanhao Lu, Ruojia Huang, Yuying Yang, Yuan Sun, Yonghui Zhang, Tao Wang, Hua-Ji Qiu
{"title":"A novel high-throughput screen identifies phenazine-1-carboxylic acid as an inhibitor of African swine fever virus replication in primary porcine alveolar macrophages.","authors":"Jing Lan, Rui Luo, Di Liu, Changxing Qi, Xin Song, Zhanhao Lu, Ruojia Huang, Yuying Yang, Yuan Sun, Yonghui Zhang, Tao Wang, Hua-Ji Qiu","doi":"10.1186/s13567-025-01467-2","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever (ASF), caused by African swine fever virus (ASFV), has resulted in significant economic impacts on the global swine industry. Currently, there is no safe and effective commercial vaccine available for ASFV. Thus, the development of effective and readily available therapeutics for ASF is urgently needed. To conduct high-throughput screening (HTS) for anti-ASFV drugs, we initially developed a recombinant dual-reporter virus (rASFV-Gluc/EGFP) using the virulent strain ASFV HLJ/18 (ASFV-WT). The enhanced green fluorescent protein (EGFP)- and Gaussia luciferase (Gluc)-encoding genes were incorporated downstream of the ASFV MGF300-4L gene without disrupting viral genes. The growth kinetics, hemadsorption, and transmission electron microscopy analysis of rASFV-Gluc/EGFP in primary porcine alveolar macrophages (PAMs) revealed that rASFV-Gluc/EGFP exhibits similar biological characteristics to ASFV-WT. Furthermore, analysis of Gluc activities, fluorescence, and next-generation sequencing indicated that rASFV-Gluc/EGFP maintains good genetic stability after 20 consecutive passages in PAMs. Using the HTS platform established with rASFV-Gluc/EGFP, we screened and identified phenazine-1-carboxylic acid (PCA) as an effective inhibitor of ASFV replication from 246 small molecule compounds in PAMs. Importantly, PCA was found to reduce ASFV replication by as much as 100-fold at a concentration of 25 μM. Overall, this study suggests that rASFV-Gluc/EGFP is suitable for rapid screening of anti-ASFV drugs. Importantly, we showed that PCA has significant anti-ASFV activity in PAMs.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"37"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01467-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

African swine fever (ASF), caused by African swine fever virus (ASFV), has resulted in significant economic impacts on the global swine industry. Currently, there is no safe and effective commercial vaccine available for ASFV. Thus, the development of effective and readily available therapeutics for ASF is urgently needed. To conduct high-throughput screening (HTS) for anti-ASFV drugs, we initially developed a recombinant dual-reporter virus (rASFV-Gluc/EGFP) using the virulent strain ASFV HLJ/18 (ASFV-WT). The enhanced green fluorescent protein (EGFP)- and Gaussia luciferase (Gluc)-encoding genes were incorporated downstream of the ASFV MGF300-4L gene without disrupting viral genes. The growth kinetics, hemadsorption, and transmission electron microscopy analysis of rASFV-Gluc/EGFP in primary porcine alveolar macrophages (PAMs) revealed that rASFV-Gluc/EGFP exhibits similar biological characteristics to ASFV-WT. Furthermore, analysis of Gluc activities, fluorescence, and next-generation sequencing indicated that rASFV-Gluc/EGFP maintains good genetic stability after 20 consecutive passages in PAMs. Using the HTS platform established with rASFV-Gluc/EGFP, we screened and identified phenazine-1-carboxylic acid (PCA) as an effective inhibitor of ASFV replication from 246 small molecule compounds in PAMs. Importantly, PCA was found to reduce ASFV replication by as much as 100-fold at a concentration of 25 μM. Overall, this study suggests that rASFV-Gluc/EGFP is suitable for rapid screening of anti-ASFV drugs. Importantly, we showed that PCA has significant anti-ASFV activity in PAMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
期刊最新文献
Engineered Bacillus subtilis WB600/ZD prevents Salmonella Infantis-induced intestinal inflammation and alters the colon microbiota in a mouse model. A novel high-throughput screen identifies phenazine-1-carboxylic acid as an inhibitor of African swine fever virus replication in primary porcine alveolar macrophages. Limited transmission of avian influenza viruses, avulaviruses, coronaviruses and Chlamydia sp. at the interface between wild birds and a free-range duck farm. Emergence of a novel porcine pestivirus with potential for cross-species transmission in China, 2023. The unique activity of the bone morphogenetic protein TGH4 affects the embryonic development of Trichinella spiralis and the establishment of vaccine protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1