Predictable ecological dynamics over incredibly small spatial scales influence early-life phenotypes in a species with temperature-dependent sex determination.

IF 2.1 3区 生物学 Q3 ECOLOGY Journal of Evolutionary Biology Pub Date : 2025-02-08 DOI:10.1093/jeb/voaf011
Mariel Terebiznik, Jessica A Leivesley, Christopher B Edge, E Graham Nancekivell, Ronald J Brooks, Njal Rollinson
{"title":"Predictable ecological dynamics over incredibly small spatial scales influence early-life phenotypes in a species with temperature-dependent sex determination.","authors":"Mariel Terebiznik, Jessica A Leivesley, Christopher B Edge, E Graham Nancekivell, Ronald J Brooks, Njal Rollinson","doi":"10.1093/jeb/voaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotype-environment associations in neonatal animals may arise in wild environments by virtue of ecological dynamics within the nest. Such dynamics may be of special importance to the evolution of temperature-dependent sex determination (TSD), an enigmatic trait which can be adaptive when the incubation temperatures that affect sexual differentiation also have differential effects on fitness of the sexes. To infer causal effects of the nest environment on fitness-relevant phenotypes, we apply structural equation modeling (SEM) to a 14-year dataset of 3085 individual embryos whose position in 179 wild snapping turtle nests could be estimated. We find that temperature has a positive effect on hatchling size, and that the same temperatures that predict hatchling size also predict sex of hatchlings. Further, the probability that embryos develop as males is correlated with hatchling size in the wild, where across all environments, males are slightly and significantly larger than females at hatching. Our SEM reveals that the covariance between size and sex arises because of temperature effects on size, and because of a predictable covariance between egg placement within the nest coupled with maternal effects on egg size. Finally, embryos deep in the nest have a high probability of becoming male even in the hottest years. Our study suggests ecological dynamics occurring within the nest are an interesting and underappreciated source of phenotypic variation. Our study also supports the view that TSD is an adaptive trait, rather than a neutral trait, by showing consistent associations between phenotype and temperature in wild nests of a TSD reptile.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voaf011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenotype-environment associations in neonatal animals may arise in wild environments by virtue of ecological dynamics within the nest. Such dynamics may be of special importance to the evolution of temperature-dependent sex determination (TSD), an enigmatic trait which can be adaptive when the incubation temperatures that affect sexual differentiation also have differential effects on fitness of the sexes. To infer causal effects of the nest environment on fitness-relevant phenotypes, we apply structural equation modeling (SEM) to a 14-year dataset of 3085 individual embryos whose position in 179 wild snapping turtle nests could be estimated. We find that temperature has a positive effect on hatchling size, and that the same temperatures that predict hatchling size also predict sex of hatchlings. Further, the probability that embryos develop as males is correlated with hatchling size in the wild, where across all environments, males are slightly and significantly larger than females at hatching. Our SEM reveals that the covariance between size and sex arises because of temperature effects on size, and because of a predictable covariance between egg placement within the nest coupled with maternal effects on egg size. Finally, embryos deep in the nest have a high probability of becoming male even in the hottest years. Our study suggests ecological dynamics occurring within the nest are an interesting and underappreciated source of phenotypic variation. Our study also supports the view that TSD is an adaptive trait, rather than a neutral trait, by showing consistent associations between phenotype and temperature in wild nests of a TSD reptile.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Evolutionary Biology
Journal of Evolutionary Biology 生物-进化生物学
CiteScore
4.20
自引率
4.80%
发文量
152
审稿时长
3-6 weeks
期刊介绍: It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.
期刊最新文献
Altruism or Selfishness: Floral behavior based on genetic relatedness with neighboring plants. Behavioural vs. physiological adaptation: which contributes more to the evolution of complex traits in a warming climate? Investigation of sex determination in African cichlids reveals lack of fixed sex chromosomes in wild populations. Predictable ecological dynamics over incredibly small spatial scales influence early-life phenotypes in a species with temperature-dependent sex determination. Assessing the impact of pedigree attributes on the validity of quantitative genetic parameter estimates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1