Machine Learning: A Multicentre Study on Predicting Lateral Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma.

IF 5 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Clinical Endocrinology & Metabolism Pub Date : 2025-02-08 DOI:10.1210/clinem/dgaf070
Jing Zhou, Daxue Li, Jiahui Ren, Chun Huang, Shiying Yang, Mingyao Chen, Zhaoyu Wan, Jinhang He, Yuchen Zhuang, Song Xue, Lin Chun, Xinliang Su
{"title":"Machine Learning: A Multicentre Study on Predicting Lateral Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma.","authors":"Jing Zhou, Daxue Li, Jiahui Ren, Chun Huang, Shiying Yang, Mingyao Chen, Zhaoyu Wan, Jinhang He, Yuchen Zhuang, Song Xue, Lin Chun, Xinliang Su","doi":"10.1210/clinem/dgaf070","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The necessity of prophylactic lateral neck dissection for cN0 papillary thyroid carcinoma (PTC) remains debated. This study aimed to compare traditional nomograms with machine learning (ML) models for predicting ipsilateral lateral and level II, III, and IV lymph node metastasis (LNM).</p><p><strong>Methods: </strong>Data from 1616 PTC patients diagnosed via fine needle aspiration biopsy from Hospital A were split into training and testing sets (7:3). 243 patients from Hospital B served as validation set. Four dependent variables-ipsilateral lateral, level II, III, and IV LNM-were analyzed. Eight ML models (Logistic Regression, Decision Tree, Random Forest-RF, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Gaussian Naive Bayes, Neural Networks) were developed and validated using 10-fold cross-validation and grid search hyperparameter tuning. Models were assessed using 11 metrics including accuracy, area under the curve (AUC), specificity, and sensitivity. The best was compared with nomograms using the Probability-based Ranking Model Approach (PMRA).</p><p><strong>Results: </strong>RF outperformed other approaches achieving accuracy, AUC, specificity, and sensitivity of 0.773/0.728, 0.858/0.799, 0.984/0.935, 0.757/0.807 in the testing/validation sets respectively for ipsilateral LLNM. A streamlined model based on the top ten contributing features that includes ipsilateral central lymph node metastasis rate, extrathyroidal extension, and ipsilateral central lymph node metastasis number retained strong performance and clearly surpassed a traditional nomogram approach based on multiple metrics and PMRA analysis. Similar results were obtained for the other dependent variables, with the RF models relying on distinct but overlapping sets of features. Clinical tool implementation is facilitated via a web-based calculator for each of the four dependent variables.</p><p><strong>Conclusion: </strong>ML, especially RF, reliably predicts lateral LNM in cN0 PTC patients, outperforming traditional nomograms.</p>","PeriodicalId":50238,"journal":{"name":"Journal of Clinical Endocrinology & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Endocrinology & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/clinem/dgaf070","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The necessity of prophylactic lateral neck dissection for cN0 papillary thyroid carcinoma (PTC) remains debated. This study aimed to compare traditional nomograms with machine learning (ML) models for predicting ipsilateral lateral and level II, III, and IV lymph node metastasis (LNM).

Methods: Data from 1616 PTC patients diagnosed via fine needle aspiration biopsy from Hospital A were split into training and testing sets (7:3). 243 patients from Hospital B served as validation set. Four dependent variables-ipsilateral lateral, level II, III, and IV LNM-were analyzed. Eight ML models (Logistic Regression, Decision Tree, Random Forest-RF, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Gaussian Naive Bayes, Neural Networks) were developed and validated using 10-fold cross-validation and grid search hyperparameter tuning. Models were assessed using 11 metrics including accuracy, area under the curve (AUC), specificity, and sensitivity. The best was compared with nomograms using the Probability-based Ranking Model Approach (PMRA).

Results: RF outperformed other approaches achieving accuracy, AUC, specificity, and sensitivity of 0.773/0.728, 0.858/0.799, 0.984/0.935, 0.757/0.807 in the testing/validation sets respectively for ipsilateral LLNM. A streamlined model based on the top ten contributing features that includes ipsilateral central lymph node metastasis rate, extrathyroidal extension, and ipsilateral central lymph node metastasis number retained strong performance and clearly surpassed a traditional nomogram approach based on multiple metrics and PMRA analysis. Similar results were obtained for the other dependent variables, with the RF models relying on distinct but overlapping sets of features. Clinical tool implementation is facilitated via a web-based calculator for each of the four dependent variables.

Conclusion: ML, especially RF, reliably predicts lateral LNM in cN0 PTC patients, outperforming traditional nomograms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Endocrinology & Metabolism
Journal of Clinical Endocrinology & Metabolism 医学-内分泌学与代谢
CiteScore
11.40
自引率
5.20%
发文量
673
审稿时长
1 months
期刊介绍: The Journal of Clinical Endocrinology & Metabolism is the world"s leading peer-reviewed journal for endocrine clinical research and cutting edge clinical practice reviews. Each issue provides the latest in-depth coverage of new developments enhancing our understanding, diagnosis and treatment of endocrine and metabolic disorders. Regular features of special interest to endocrine consultants include clinical trials, clinical reviews, clinical practice guidelines, case seminars, and controversies in clinical endocrinology, as well as original reports of the most important advances in patient-oriented endocrine and metabolic research. According to the latest Thomson Reuters Journal Citation Report, JCE&M articles were cited 64,185 times in 2008.
期刊最新文献
Machine Learning: A Multicentre Study on Predicting Lateral Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma. Fetuin B is related to cytokine/chemokine and insulin signaling in adipose tissue and plasma in humans. Implementation strategies for inpatient continuous glucose monitoring-based diabetes management: a systematic review. Prevalence and determinants of diabetes mellitus in 2,338 long-term Dutch childhood cancer survivors (DCCS-LATER2 Study). Correlation of TgAb With Clinicopathological Features and Unfavorable Efficacy of 131I Ablation in PTC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1