Bin Li, Wenhao Liu, Jie Xu, Xuxu Huang, Long Yang, Fang Xu
{"title":"Decoding maize meristems maintenance and differentiation: integrating single-cell and spatial omics.","authors":"Bin Li, Wenhao Liu, Jie Xu, Xuxu Huang, Long Yang, Fang Xu","doi":"10.1016/j.jgg.2025.01.012","DOIUrl":null,"url":null,"abstract":"<p><p>All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review provides a comprehensive summary of the recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.01.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review provides a comprehensive summary of the recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.