Aristolochic acid I abnormally activates the wnt7b/β-catenin signaling pathway and affects the repair of renal tubules

IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemico-Biological Interactions Pub Date : 2025-02-05 DOI:10.1016/j.cbi.2025.111413
Xiaofen Li , Ying Zhang , Ailin Lan , Maojuan Li , Ming Xia , Chuanhua Huang , Didong Lou
{"title":"Aristolochic acid I abnormally activates the wnt7b/β-catenin signaling pathway and affects the repair of renal tubules","authors":"Xiaofen Li ,&nbsp;Ying Zhang ,&nbsp;Ailin Lan ,&nbsp;Maojuan Li ,&nbsp;Ming Xia ,&nbsp;Chuanhua Huang ,&nbsp;Didong Lou","doi":"10.1016/j.cbi.2025.111413","DOIUrl":null,"url":null,"abstract":"<div><div>Aristolochic acid I (AAI), which is one of the main forms of aristolochic acid, can cause aristolochic acid nephropathy. Abnormal activation or inhibition of the Wnt7b/β-catenin signaling pathway may lead to the occurrence and development of kidney disease. This study aimed to investigate the effect of the Wnt7b/β-catenin signaling pathway on the damage and repair processes of renal tubular epithelial cells (RTECs) using mouse and zebrafish models of acute aristolochic acid intoxication. Our data revealed that after mice were exposed to 5 mg/kg/day AAI for 4 days and 6 days the expression of Wnt7b on the villi of RTECs increased, the expression of β-catenin on the cytoplasm decreased, and the expression of β-catenin in the nucleus increased. The protein expression levels of PCNA and Kim-1 increased. After zebrafish at 3 days post fertilization were exposed to 2, 4, and 8 μg/mL AAI for 24 h, the results indicated that treatment with AAI resulted in a decrease in the number of RTECs and the occurrence of apoptosis. Importantly, after knockout of the <em>Wnt7ba</em> gene, damage to RTECs in zebrafish larvae was aggravated, the mRNA expression level of PCNA decreased, and that of Kim-1 increased. In addition, we found that AAI exhibits developmental toxicity in fertilized zebrafish eggs. As a result, AAI leads to abnormal activation of the Wnt7b/β-catenin signaling pathway, which affects the repair of renal tubular injury by activating the downstream protein PCNA. The Wnt7ba gene may serve as a potential therapeutic target to promote repair after renal tubular injury.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"408 ","pages":"Article 111413"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725000432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aristolochic acid I (AAI), which is one of the main forms of aristolochic acid, can cause aristolochic acid nephropathy. Abnormal activation or inhibition of the Wnt7b/β-catenin signaling pathway may lead to the occurrence and development of kidney disease. This study aimed to investigate the effect of the Wnt7b/β-catenin signaling pathway on the damage and repair processes of renal tubular epithelial cells (RTECs) using mouse and zebrafish models of acute aristolochic acid intoxication. Our data revealed that after mice were exposed to 5 mg/kg/day AAI for 4 days and 6 days the expression of Wnt7b on the villi of RTECs increased, the expression of β-catenin on the cytoplasm decreased, and the expression of β-catenin in the nucleus increased. The protein expression levels of PCNA and Kim-1 increased. After zebrafish at 3 days post fertilization were exposed to 2, 4, and 8 μg/mL AAI for 24 h, the results indicated that treatment with AAI resulted in a decrease in the number of RTECs and the occurrence of apoptosis. Importantly, after knockout of the Wnt7ba gene, damage to RTECs in zebrafish larvae was aggravated, the mRNA expression level of PCNA decreased, and that of Kim-1 increased. In addition, we found that AAI exhibits developmental toxicity in fertilized zebrafish eggs. As a result, AAI leads to abnormal activation of the Wnt7b/β-catenin signaling pathway, which affects the repair of renal tubular injury by activating the downstream protein PCNA. The Wnt7ba gene may serve as a potential therapeutic target to promote repair after renal tubular injury.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
3.90%
发文量
410
审稿时长
36 days
期刊介绍: Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.
期刊最新文献
Editorial Board Involvement of Fe(III) in the formation of immunoglobulin G-enriched protein aggregates in human plasma Small molecule as potent hepatocellular carcinoma progression inhibitor through stabilizing G-quadruplex DNA to activate replication stress responded DNA damage Editorial Board The anti-Alzheimer's disease effects of ganoderic acid A by inhibiting ferroptosis-lipid peroxidation via activation of the NRF2/SLC7A11/GPX4 signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1