首页 > 最新文献

Chemico-Biological Interactions最新文献

英文 中文
The novel ginseng Rh2 derivative 2-deoxy-Rh2, exhibits potent anticancer effect via the AMPK/mTOR/autophagy signaling pathway against breast cancer
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-15 DOI: 10.1016/j.cbi.2025.111422
Xiaodong Li , Jianyuan Yin , Qing Song , Qi Yang , Chenchen Li , Huan Gao
Breast cancer is the most prevalent cancer and the second leading cause of cancer-related mortality among women globally, resulting in considerable psychological and physical distress for patients. Our previous study synthesized a novel derivative, 2-Deoxy-Rh2, which exhibited anticancer properties by influencing glycolysis and mitochondrial respiration. The objective of the current study was to investigate the anti-proliferative effects and underlying mechanisms of 2-Deoxy-Rh2 on human breast cancer cell lines MCF-7 and MDA-MB-231. In our experiments, we observed that 2-Deoxy-Rh2 reduced cell viability and induced cell cycle arrest, reactive oxygen species accumulation, and mitochondrial dysfunction. Furthermore, treatment with 2-Deoxy-Rh2 affected autophagic flux and induction, leading to increased expression of microtubule-associated protein light chain 3B (LC3B) and decreased expression of sequestosome 1 (P62) expression in both two breast cancer cell lines, which could be reversed by 3-Methyladenine (3-MA). Additionally, the AMPK signaling pathway plays a crucial role in 2-Deoxy-Rh2-induced autophagy. 2-Deoxy-Rh2 modulated the expression levels of mTOR and AMPK in MCF-7 and MDA-MB-231 cells, resulting in the cellular homeostasis disruption, autophagy and apoptosis, which was further corroborated by compound C (CC). Finally, the study validated the antitumor activity and mechanism of 2-Deoxy-Rh2 in vivo using Balb/c mice bearing 4T1 tumor cells. Overall, the results suggest that 2-Deoxy-Rh2 can induce apoptosis and autophagic cell death through the AMPK/mTOR signaling pathway, positioning it as a promising candidate for an antitumor agent against breast cancer.
{"title":"The novel ginseng Rh2 derivative 2-deoxy-Rh2, exhibits potent anticancer effect via the AMPK/mTOR/autophagy signaling pathway against breast cancer","authors":"Xiaodong Li ,&nbsp;Jianyuan Yin ,&nbsp;Qing Song ,&nbsp;Qi Yang ,&nbsp;Chenchen Li ,&nbsp;Huan Gao","doi":"10.1016/j.cbi.2025.111422","DOIUrl":"10.1016/j.cbi.2025.111422","url":null,"abstract":"<div><div>Breast cancer is the most prevalent cancer and the second leading cause of cancer-related mortality among women globally, resulting in considerable psychological and physical distress for patients. Our previous study synthesized a novel derivative, 2-Deoxy-Rh2, which exhibited anticancer properties by influencing glycolysis and mitochondrial respiration. The objective of the current study was to investigate the anti-proliferative effects and underlying mechanisms of 2-Deoxy-Rh2 on human breast cancer cell lines MCF-7 and MDA-MB-231. In our experiments, we observed that 2-Deoxy-Rh2 reduced cell viability and induced cell cycle arrest, reactive oxygen species accumulation, and mitochondrial dysfunction. Furthermore, treatment with 2-Deoxy-Rh2 affected autophagic flux and induction, leading to increased expression of microtubule-associated protein light chain 3B (LC3B) and decreased expression of sequestosome 1 (P62) expression in both two breast cancer cell lines, which could be reversed by 3-Methyladenine (3-MA). Additionally, the AMPK signaling pathway plays a crucial role in 2-Deoxy-Rh2-induced autophagy. 2-Deoxy-Rh2 modulated the expression levels of mTOR and AMPK in MCF-7 and MDA-MB-231 cells, resulting in the cellular homeostasis disruption, autophagy and apoptosis, which was further corroborated by compound C (CC). Finally, the study validated the antitumor activity and mechanism of 2-Deoxy-Rh2 in vivo using Balb/c mice bearing 4T1 tumor cells. Overall, the results suggest that 2-Deoxy-Rh2 can induce apoptosis and autophagic cell death through the AMPK/mTOR signaling pathway, positioning it as a promising candidate for an antitumor agent against breast cancer.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111422"},"PeriodicalIF":4.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro and in vivo anti-inflammatory effects of 5-hydroxyconiferaldehyde via NF-κB, MAPK/AP-1, and Nrf2 modulation 通过 NF-κB、MAPK/AP-1 和 Nrf2 调节 5-hydroxyconiferaldehyde 的体外和体内抗炎作用
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-14 DOI: 10.1016/j.cbi.2025.111427
Soo-Yeon Kim , Jae-Min Kim , Kyung-Sook Chung , Dae Sik Jang , Ja-Yeon Lee , Choi Kim , Jae Yeol Lee , Jong Kil Lee , Kyung-Tae Lee
We previously reported that 5-hydroxyconiferaldehyde (5-HCA), a phenolic compound isolated from the Campanula takesimana, potently inhibits prostaglandin E2 (PGE2) production triggered by lipopolysaccharide (LPS) in macrophages. As the precise molecular mechanisms underlying the anti-inflammatory effects of 5-HCA remain unclear, we further examined these mechanisms in LPS-stimulated RAW 264.7 macrophages and carrageenan-induced paw edema rats. The results revealed that 5-HCA considerably impeded nitric oxide (NO) and PGE2 production as well as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β expression by suppressing the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) signaling pathways in LPS-induced RAW 264.7 macrophages. Furthermore, 5-HCA suppressed the generation of reactive oxygen species (ROS) triggered by LPS by enhancing heme oxygenase-1 (HO-1) expression via nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). In rats with carrageenan-induced paw edema, administration of 5-HCA (10 or 30 mg/kg, i.p.) resulted in a significant reduction in the inflammatory response (paw volume and thickness) and inflammatory hyperalgesia by suppressing pro-inflammatory mediators through NF-κB, MAPK/AP-1, and Nrf2 regulation. These findings highlight the anti-inflammatory properties of 5-HCA in the acute inflammation model and suggest its potential for further investigation of broader inflammatory disorders.
{"title":"In vitro and in vivo anti-inflammatory effects of 5-hydroxyconiferaldehyde via NF-κB, MAPK/AP-1, and Nrf2 modulation","authors":"Soo-Yeon Kim ,&nbsp;Jae-Min Kim ,&nbsp;Kyung-Sook Chung ,&nbsp;Dae Sik Jang ,&nbsp;Ja-Yeon Lee ,&nbsp;Choi Kim ,&nbsp;Jae Yeol Lee ,&nbsp;Jong Kil Lee ,&nbsp;Kyung-Tae Lee","doi":"10.1016/j.cbi.2025.111427","DOIUrl":"10.1016/j.cbi.2025.111427","url":null,"abstract":"<div><div>We previously reported that 5-hydroxyconiferaldehyde (5-HCA), a phenolic compound isolated from the <em>Campanula takesimana</em>, potently inhibits prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) production triggered by lipopolysaccharide (LPS) in macrophages. As the precise molecular mechanisms underlying the anti-inflammatory effects of 5-HCA remain unclear, we further examined these mechanisms in LPS-stimulated RAW 264.7 macrophages and carrageenan-induced paw edema rats. The results revealed that 5-HCA considerably impeded nitric oxide (NO) and PGE<sub>2</sub> production as well as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β expression by suppressing the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) signaling pathways in LPS-induced RAW 264.7 macrophages. Furthermore, 5-HCA suppressed the generation of reactive oxygen species (ROS) triggered by LPS by enhancing heme oxygenase-1 (HO-1) expression via nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). In rats with carrageenan-induced paw edema, administration of 5-HCA (10 or 30 mg/kg, <em>i.p.</em>) resulted in a significant reduction in the inflammatory response (paw volume and thickness) and inflammatory hyperalgesia by suppressing pro-inflammatory mediators through NF-κB, MAPK/AP-1, and Nrf2 regulation. These findings highlight the anti-inflammatory properties of 5-HCA in the acute inflammation model and suggest its potential for further investigation of broader inflammatory disorders.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111427"},"PeriodicalIF":4.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimony-induced hippocampal neuronal impairment through ferroptosis activation from NCOA4-mediated ferritinophagy
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1016/j.cbi.2025.111415
Shali Yu , Ziyu Qin , Yuqing Chen , Fengxu Wang , Zhijie Li , Ruiyao Huang , Zhengnan Gao , Yi Qu , Peng Xue , Yonghua Luo , Xiaoke Wang , Xinyuan Zhao
Recently, our group identified antimony (Sb) as a novel nerve pollutant, can lead to neuronal injure. However, Sb-associated neurotoxicological mechanisms yet remain unclear. Herein, we found Sb induced hippocampal neuronal ferroptosis in vivo and in vitro. Moreover, ferroptosis inhibition using ferrostatin-1 effectively attenuated Sb-induced neuronal damage in PC12 cells and mice hippocampal regions. Furthermore, iron chelator deferoxamine (DFO) also effectively attenuated ferroptosis and cytotoxicity in PC12 cells. In vitro, Sb treatment reduced expression of the heavy (H)- and light (L)-chain subunits of ferritin (FTH1 and FTL). Moreover, Sb accelerated FTH1 and FTL protein degradation, while ferritin overexpression by plasmid or hippocampal AAV injections dramatically weaken Sb-induced ferroptosis. Sb exposure accelerated autophagic flux, and autophagy inhibition with beclin1 knockdown effectively reduced Sb-mediated ferroptosis. 3-methyladenine treatment in Sb-exposed mice prevented the decrease of FTH1 and FTL protein, resulting in recovery of Sb-induced hippocampal ferroptosis as well as neuronal loss, suggesting that Sb triggered hippocampal neuronal ferritinophagy. Finally, we found Sb upregulated NCOA4 protein expression, while NCOA4 knockdown significantly attenuated Sb-triggered ferroptosis. Collectively, our results proved that Sb triggers hippocampal neuronal ferroptosis through NCOA4-dependent ferritinophagy.
{"title":"Antimony-induced hippocampal neuronal impairment through ferroptosis activation from NCOA4-mediated ferritinophagy","authors":"Shali Yu ,&nbsp;Ziyu Qin ,&nbsp;Yuqing Chen ,&nbsp;Fengxu Wang ,&nbsp;Zhijie Li ,&nbsp;Ruiyao Huang ,&nbsp;Zhengnan Gao ,&nbsp;Yi Qu ,&nbsp;Peng Xue ,&nbsp;Yonghua Luo ,&nbsp;Xiaoke Wang ,&nbsp;Xinyuan Zhao","doi":"10.1016/j.cbi.2025.111415","DOIUrl":"10.1016/j.cbi.2025.111415","url":null,"abstract":"<div><div>Recently, our group identified antimony (Sb) as a novel nerve pollutant, can lead to neuronal injure. However, Sb-associated neurotoxicological mechanisms yet remain unclear. Herein, we found Sb induced hippocampal neuronal ferroptosis in <em>vivo</em> and in <em>vitro</em>. Moreover, ferroptosis inhibition using ferrostatin-1 effectively attenuated Sb-induced neuronal damage in PC12 cells and mice hippocampal regions. Furthermore, iron chelator deferoxamine (DFO) also effectively attenuated ferroptosis and cytotoxicity in PC12 cells. In vitro, Sb treatment reduced expression of the heavy (H)- and light (L)-chain subunits of ferritin (FTH1 and FTL). Moreover, Sb accelerated FTH1 and FTL protein degradation, while ferritin overexpression by plasmid or hippocampal AAV injections dramatically weaken Sb-induced ferroptosis. Sb exposure accelerated autophagic flux, and autophagy inhibition with beclin1 knockdown effectively reduced Sb-mediated ferroptosis. 3-methyladenine treatment in Sb-exposed mice prevented the decrease of FTH1 and FTL protein, resulting in recovery of Sb-induced hippocampal ferroptosis as well as neuronal loss, suggesting that Sb triggered hippocampal neuronal ferritinophagy. Finally, we found Sb upregulated NCOA4 protein expression, while NCOA4 knockdown significantly attenuated Sb-triggered ferroptosis. Collectively, our results proved that Sb triggers hippocampal neuronal ferroptosis through NCOA4-dependent ferritinophagy.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111415"},"PeriodicalIF":4.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockout of TRPM2 protects against cyclophosphamide-induced premature ovarian failure via inhibiting AMPK/p53 signaling pathway 敲除 TRPM2 可通过抑制 AMPK/p53 信号通路防止环磷酰胺诱发的卵巢早衰
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-12 DOI: 10.1016/j.cbi.2025.111426
Penghui Nie , Ruiying Zhang , Tiantian Jia , Jialyu Huang , Hengyi Xu
The global prevalence of premature ovarian failure (POF) is from 3.1 % to 4.3 %, which is a multifactorial disease including genetics, environmental and medical factors. However, the occurrence of POF is not well understood. To further explore the potential mechanism of POF, cyclophosphamide (CTX) was used to construct the model of POF. Additionally, the occurrence of POF was related to oxidative stress, apoptosis, proliferation and others. Ca2+ is essential for almost all life processes. Therefore, TRPM2-deficient mice was used to explore the role of Ca2+ in POF. The results indicated that the mouse serum E2 and AMH levels decreased, FSH and LH levels increased, and the activity of antioxidant enzymes including CAT, SOD and GSH decreased with mtROS accumulation in the ovary, thereby causing ovarian DNA damage, promoting ovarian cell apoptosis and inhibiting cell proliferation after wild-type mice exposed to CTX. Notably, these indicators have improved after TRPM2−/−. Based on these, we have further proved that the activation TRPM2 channel could lead to intracellular Ca2+ overload, plentiful Ca2+ bind to calmodulin accompanied with mitochondrial ROS accumulation, thereby activating AMPK/p53 signaling pathway, inducing proliferation arrest and excessive apoptosis. We hope to provide therapeutic targets to prevent the occurrence of POF by studying the potential mechanism of POF.
{"title":"Knockout of TRPM2 protects against cyclophosphamide-induced premature ovarian failure via inhibiting AMPK/p53 signaling pathway","authors":"Penghui Nie ,&nbsp;Ruiying Zhang ,&nbsp;Tiantian Jia ,&nbsp;Jialyu Huang ,&nbsp;Hengyi Xu","doi":"10.1016/j.cbi.2025.111426","DOIUrl":"10.1016/j.cbi.2025.111426","url":null,"abstract":"<div><div>The global prevalence of premature ovarian failure (POF) is from 3.1 % to 4.3 %, which is a multifactorial disease including genetics, environmental and medical factors. However, the occurrence of POF is not well understood. To further explore the potential mechanism of POF, cyclophosphamide (CTX) was used to construct the model of POF. Additionally, the occurrence of POF was related to oxidative stress, apoptosis, proliferation and others. Ca<sup>2+</sup> is essential for almost all life processes. Therefore, TRPM2-deficient mice was used to explore the role of Ca<sup>2+</sup> in POF. The results indicated that the mouse serum E<sub>2</sub> and AMH levels decreased, FSH and LH levels increased, and the activity of antioxidant enzymes including CAT, SOD and GSH decreased with mtROS accumulation in the ovary, thereby causing ovarian DNA damage, promoting ovarian cell apoptosis and inhibiting cell proliferation after wild-type mice exposed to CTX. Notably, these indicators have improved after TRPM2<sup>−/−</sup>. Based on these, we have further proved that the activation TRPM2 channel could lead to intracellular Ca<sup>2+</sup> overload, plentiful Ca<sup>2+</sup> bind to calmodulin accompanied with mitochondrial ROS accumulation, thereby activating AMPK/p53 signaling pathway, inducing proliferation arrest and excessive apoptosis. We hope to provide therapeutic targets to prevent the occurrence of POF by studying the potential mechanism of POF.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111426"},"PeriodicalIF":4.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicokinetics and reproductive toxicity of maternal bisphenol AF exposure during gestation in offspring of Sprague Dawley rats
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-11 DOI: 10.1016/j.cbi.2025.111424
Yaxuan Zhu , Xiuxiang Liu , Xiuying Liu , Yijiao Shi , Huaxin Li , Shaoguo Ru , Hua Tian
Bisphenol AF (BPAF) has been widely used as a main alternative to bisphenol A (BPA), and previous in vitro studies have shown that BPAF has higher reproductive toxicity potentials than BPA. However, data on in vivo toxicity of BPAF is still limited. In this study, Sprague Dawley rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to study toxicokinetics and reproductive toxicity in offspring. The results showed that plasma concentrations BPAF peaked within 6 h after birth, followed by a two-phase decay, with clearance rates of approximately 3.0 l/h and terminal half-life values ranging from 77 h to 114 h, suggesting fast absorption and high persistence of BPAF. At postnatal day 21 (PND21), BPAF was found to be bioaccumulated in reproductive organs (testes and ovaries) of the offspring, resulting in adverse effects on reproduction in both sexes. Lower anogenital distance, reduced relative testicular weight, dissolved interstitial cells, fewer primary spermatocytes, decreased testosterone levels, and increased luteinizing hormone levels were detected in male offspring. In female offspring, vacuolization in follicular antrum, fewer follicles, increased 17β-estradiol levels, and increased luteinizing hormone levels in female offspring were found. Gene expression of scavenger receptor class B type I (SR-B1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol regulatory element-binding protein-1c (SREBP-1c), and several steroidogenic enzymes was significantly decreased in male offspring following maternal exposure to BPAF, suggesting that the decreases in testosterone levels is a result of inhibited cholesterol uptake, cholesterol de novo synthesis, and steroidogenesis. In addition, inhibition of pathways of phagosome and cell adhesion molecules might be the underlying molecular mechanism involved in BPAF-induced reproductive disorders in male offspring. This study provides the scientific basis for a comprehensive assessment of the safety of BPAF.
{"title":"Toxicokinetics and reproductive toxicity of maternal bisphenol AF exposure during gestation in offspring of Sprague Dawley rats","authors":"Yaxuan Zhu ,&nbsp;Xiuxiang Liu ,&nbsp;Xiuying Liu ,&nbsp;Yijiao Shi ,&nbsp;Huaxin Li ,&nbsp;Shaoguo Ru ,&nbsp;Hua Tian","doi":"10.1016/j.cbi.2025.111424","DOIUrl":"10.1016/j.cbi.2025.111424","url":null,"abstract":"<div><div>Bisphenol AF (BPAF) has been widely used as a main alternative to bisphenol A (BPA), and previous <em>in vitro</em> studies have shown that BPAF has higher reproductive toxicity potentials than BPA. However, data on <em>in vivo</em> toxicity of BPAF is still limited. In this study, Sprague Dawley rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to study toxicokinetics and reproductive toxicity in offspring. The results showed that plasma concentrations BPAF peaked within 6 h after birth, followed by a two-phase decay, with clearance rates of approximately 3.0 l/h and terminal half-life values ranging from 77 h to 114 h, suggesting fast absorption and high persistence of BPAF. At postnatal day 21 (PND21), BPAF was found to be bioaccumulated in reproductive organs (testes and ovaries) of the offspring, resulting in adverse effects on reproduction in both sexes. Lower anogenital distance, reduced relative testicular weight, dissolved interstitial cells, fewer primary spermatocytes, decreased testosterone levels, and increased luteinizing hormone levels were detected in male offspring. In female offspring, vacuolization in follicular antrum, fewer follicles, increased 17<em>β</em>-estradiol levels, and increased luteinizing hormone levels in female offspring were found. Gene expression of <em>scavenger receptor class B type I</em> (<em>SR-B1</em>), <em>3-hydroxy-3-methylglutaryl-CoA reductase</em> (<em>HMGR</em>), <em>sterol regulatory element-binding protein-1c</em> (<em>SREBP-1c</em>), and several steroidogenic enzymes was significantly decreased in male offspring following maternal exposure to BPAF, suggesting that the decreases in testosterone levels is a result of inhibited cholesterol uptake, cholesterol <em>de novo</em> synthesis, and steroidogenesis. In addition, inhibition of pathways of phagosome and cell adhesion molecules might be the underlying molecular mechanism involved in BPAF-induced reproductive disorders in male offspring. This study provides the scientific basis for a comprehensive assessment of the safety of BPAF.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111424"},"PeriodicalIF":4.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warning on the inhalation of silica nanoparticles: Experimental evidence for its easy passage through the air-blood barrier, resulting in systemic distribution and pathological injuries
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-11 DOI: 10.1016/j.cbi.2025.111423
Hailin Xu , Yurou Zhu , Lingnan Zhu , Donglei Wang , Songqing Lv , Xueyan Li , Caixia Guo , Yanbo Li
As a result of accumulating data, silica nanoparticles (SiNPs) are known to be harmful when inhaled. Nevertheless, the systemic research on its biological processes remains incompletely understood. In our work, we investigated the systemic effects in rats in response to the respiratory exposure of SiNPs, and in-depth clarified the particle distribution in vivo. Moreover, a model of the air-blood barrier was developed to assess the interplay of SiNPs with the epithelium/endothelium interface in vitro. The model was established via a transwell co-culturing of the alveolar epithelium (MLE-12) and the pulmonary microvascular epithelium (MPVECs). Consequently, our data revealed a systemic particle distribution and ensuing multi-tissue pathological injuries in SiNPs-instilled rats, including the heart, spleen, and kidneys. Simultaneously, the translocation of SiNPs passing through the air-blood barrier was verified in vitro. Also, a dose-dependent interruption to the air-blood barrier integrity by SiNPs was noticed in vitro, accompanied by the damage of tight junctions. SiNPs translocation across the air-blood barrier can inevitably facilitate the extra-pulmonary distribution of SiNPs and ensuing systemic effects. Overall, this study provides evidence on the systemic toxicity potential of SiNPs, while highlighting the significance of comprehending SiNPs toxicity and ultimately controlling the health hazards.
{"title":"Warning on the inhalation of silica nanoparticles: Experimental evidence for its easy passage through the air-blood barrier, resulting in systemic distribution and pathological injuries","authors":"Hailin Xu ,&nbsp;Yurou Zhu ,&nbsp;Lingnan Zhu ,&nbsp;Donglei Wang ,&nbsp;Songqing Lv ,&nbsp;Xueyan Li ,&nbsp;Caixia Guo ,&nbsp;Yanbo Li","doi":"10.1016/j.cbi.2025.111423","DOIUrl":"10.1016/j.cbi.2025.111423","url":null,"abstract":"<div><div>As a result of accumulating data, silica nanoparticles (SiNPs) are known to be harmful when inhaled. Nevertheless, the systemic research on its biological processes remains incompletely understood. In our work, we investigated the systemic effects in rats in response to the respiratory exposure of SiNPs, and in-depth clarified the particle distribution <em>in vivo</em>. Moreover, a model of the air-blood barrier was developed to assess the interplay of SiNPs with the epithelium/endothelium interface <em>in vitro</em>. The model was established <em>via</em> a transwell co-culturing of the alveolar epithelium (MLE-12) and the pulmonary microvascular epithelium (MPVECs). Consequently, our data revealed a systemic particle distribution and ensuing multi-tissue pathological injuries in SiNPs-instilled rats, including the heart, spleen, and kidneys. Simultaneously, the translocation of SiNPs passing through the air-blood barrier was verified <em>in vitro</em>. Also, a dose-dependent interruption to the air-blood barrier integrity by SiNPs was noticed <em>in vitro</em>, accompanied by the damage of tight junctions. SiNPs translocation across the air-blood barrier can inevitably facilitate the extra-pulmonary distribution of SiNPs and ensuing systemic effects. Overall, this study provides evidence on the systemic toxicity potential of SiNPs, while highlighting the significance of comprehending SiNPs toxicity and ultimately controlling the health hazards.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111423"},"PeriodicalIF":4.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MjTX-II, a Lys49-PLA2 from Bothrops moojeni snake venom, restricts Toxoplasma gondii infection via ROS and VEGF regulation
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-07 DOI: 10.1016/j.cbi.2025.111417
Samuel Cota Teixeira , Thales Alves de Melo Fernandes , Guilherme de Souza , Alessandra Monteiro Rosini , Aryani Felixa Fajardo Martínez , Angelica Oliveira Gomes , Rosiane Nascimento Alves , Daiana Silva Lopes , Maria Vitoria da Silva , Emidio Beraldo-Neto , Patrícia Bianca Clissa , Bellisa Freitas Barbosa , Veridiana de Melo Rodrigues Ávila , Eloisa Amália Vieira Ferro
Owing to the lack of efficient therapy and emerging resistance strains, toxoplasmosis affects about one-third of the world's population. Also, pregnancy-related infection can cause vertical transmission and result in fetal death. Despite the global efforts to combat Toxoplasma gondii infection, conventional therapies have been associated with serious side effects. Therefore, it is relevant to search for effective and less-toxic treatments of toxoplasmosis. In this scenario, snake venoms emerged as a promising source of therapeutic molecules due to their wide variety of biological effects. The present study investigated the anti-T. gondii effects of MjTX-II, a Lys49-PLA2 isolated from Bothrops moojeni, in trophoblast cells and villous explants from the third trimester of pregnancy. We found that non-cytotoxic doses of MjTX-II impaired parasite invasion and intracellular growth in BeWo cells. Also, MjTX–II–pre-treated T. gondii tachyzoites exhibited irregular rough surfaces, papules, and dimples, suggesting a possible action directly on the parasites. Moreover, MjTX-II was able to modulate the host environment by increasing ROS and cytokine levels involved in the control of infection. In addition, we observed that MjTX-II decreased VEGF levels and the addition of rVEGF increased T. gondii growth in BeWo cells. Through molecular docking simulations, we verified that MjTX-II is able to bind VEGFR2 and ICAM-1 receptors associated with parasite proliferation and dissemination. This work contributes to the discovery of therapeutic targets against T. gondii infection and for the development of effective and low-toxic antiparasitic molecules against congenital toxoplasmosis.
{"title":"MjTX-II, a Lys49-PLA2 from Bothrops moojeni snake venom, restricts Toxoplasma gondii infection via ROS and VEGF regulation","authors":"Samuel Cota Teixeira ,&nbsp;Thales Alves de Melo Fernandes ,&nbsp;Guilherme de Souza ,&nbsp;Alessandra Monteiro Rosini ,&nbsp;Aryani Felixa Fajardo Martínez ,&nbsp;Angelica Oliveira Gomes ,&nbsp;Rosiane Nascimento Alves ,&nbsp;Daiana Silva Lopes ,&nbsp;Maria Vitoria da Silva ,&nbsp;Emidio Beraldo-Neto ,&nbsp;Patrícia Bianca Clissa ,&nbsp;Bellisa Freitas Barbosa ,&nbsp;Veridiana de Melo Rodrigues Ávila ,&nbsp;Eloisa Amália Vieira Ferro","doi":"10.1016/j.cbi.2025.111417","DOIUrl":"10.1016/j.cbi.2025.111417","url":null,"abstract":"<div><div>Owing to the lack of efficient therapy and emerging resistance strains, toxoplasmosis affects about one-third of the world's population. Also, pregnancy-related infection can cause vertical transmission and result in fetal death. Despite the global efforts to combat <em>Toxoplasma gondii</em> infection, conventional therapies have been associated with serious side effects. Therefore, it is relevant to search for effective and less-toxic treatments of toxoplasmosis. In this scenario, snake venoms emerged as a promising source of therapeutic molecules due to their wide variety of biological effects. The present study investigated the anti-<em>T. gondii</em> effects of MjTX-II, a Lys49-PLA<sub>2</sub> isolated from <em>Bothrops moojeni,</em> in trophoblast cells and villous explants from the third trimester of pregnancy. We found that non-cytotoxic doses of MjTX-II impaired parasite invasion and intracellular growth in BeWo cells. Also, MjTX–II–pre-treated <em>T. gondii</em> tachyzoites exhibited irregular rough surfaces, papules, and dimples, suggesting a possible action directly on the parasites. Moreover, MjTX-II was able to modulate the host environment by increasing ROS and cytokine levels involved in the control of infection. In addition, we observed that MjTX-II decreased VEGF levels and the addition of rVEGF increased <em>T. gondii</em> growth in BeWo cells. Through molecular docking simulations, we verified that MjTX-II is able to bind VEGFR2 and ICAM-1 receptors associated with parasite proliferation and dissemination. This work contributes to the discovery of therapeutic targets against <em>T. gondii</em> infection and for the development of effective and low-toxic antiparasitic molecules against congenital toxoplasmosis.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111417"},"PeriodicalIF":4.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate-triggered histone lactylation contributes to podocyte epithelial-mesenchymal transition in diabetic nephropathy in mice
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-07 DOI: 10.1016/j.cbi.2025.111418
Ting Zheng , Yan-Ping Gu , Jiang-Meng Wang , Ting-Ting Huang , Ling-Shan Gou , Yao-Wu Liu
Diabetic nephropathy (DN) closely relates to morphological and functional changes of podocytes, and anaerobic glycolysis represents the predominant energy source of podocytes. However, it is unknown whether lactate accumulation in chronic high glucose causes epithelial-mesenchymal transition (EMT) of podocytes through lactate-derived histone lysine lactylation (HKla). Lactate levels increased in high glucose-stimulated mouse podocyte cell line MPC and blood and the kidney of diabetic mice. High glucose or exogenous lactate decreased nephrin levels while increased collagen IV and HKla levels in MPC, but co-treatment with oxamate or dichloroacetate reduced lactate levels and alleviated the decreases in nephrin and zonula occludens- 1 levels and the increases in collagen IV and α-smooth muscle actin as well as HKla levels in high glucose-cultured MPC. However, co-treatment with rotenone diversely affected these indices. Eleven intersection genes were screened in lactate raising and lowering interventions in podocytes using RNA sequencing and four genes were validated by qPCR. Furthermore, lactate-lowering treatments attenuated renal functions, EMT, and histone lactylation in the kidney of diabetic mice. Additionally, the increased lactate might result from the upregulated monocarboxylate transporter 2 in the mitochondria and the decreased pyruvate dehydrogenase activity. Together, we reveal the role of histone lactylation in driving the EMT phenotype of podocytes in chronic high glucose state, subsequently promoting the pathological process of DN. Our study provides a reference for the study of the relationship between lactate-induced histone lactylation modification and diabetic complications.
{"title":"Lactate-triggered histone lactylation contributes to podocyte epithelial-mesenchymal transition in diabetic nephropathy in mice","authors":"Ting Zheng ,&nbsp;Yan-Ping Gu ,&nbsp;Jiang-Meng Wang ,&nbsp;Ting-Ting Huang ,&nbsp;Ling-Shan Gou ,&nbsp;Yao-Wu Liu","doi":"10.1016/j.cbi.2025.111418","DOIUrl":"10.1016/j.cbi.2025.111418","url":null,"abstract":"<div><div>Diabetic nephropathy (DN) closely relates to morphological and functional changes of podocytes, and anaerobic glycolysis represents the predominant energy source of podocytes. However, it is unknown whether lactate accumulation in chronic high glucose causes epithelial-mesenchymal transition (EMT) of podocytes through lactate-derived histone lysine lactylation (HKla). Lactate levels increased in high glucose-stimulated mouse podocyte cell line MPC and blood and the kidney of diabetic mice. High glucose or exogenous lactate decreased nephrin levels while increased collagen IV and HKla levels in MPC, but co-treatment with oxamate or dichloroacetate reduced lactate levels and alleviated the decreases in nephrin and zonula occludens- 1 levels and the increases in collagen IV and α-smooth muscle actin as well as HKla levels in high glucose-cultured MPC. However, co-treatment with rotenone diversely affected these indices. Eleven intersection genes were screened in lactate raising and lowering interventions in podocytes using RNA sequencing and four genes were validated by qPCR. Furthermore, lactate-lowering treatments attenuated renal functions, EMT, and histone lactylation in the kidney of diabetic mice. Additionally, the increased lactate might result from the upregulated monocarboxylate transporter 2 in the mitochondria and the decreased pyruvate dehydrogenase activity. Together, we reveal the role of histone lactylation in driving the EMT phenotype of podocytes in chronic high glucose state, subsequently promoting the pathological process of DN. Our study provides a reference for the study of the relationship between lactate-induced histone lactylation modification and diabetic complications.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"408 ","pages":"Article 111418"},"PeriodicalIF":4.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatty acid binding protein 4 regulates doxorubicin-induced renal injury via mediating lipid metabolism and apoptosis
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-06 DOI: 10.1016/j.cbi.2025.111419
Chuchu Wang , Tao Zhang , Yufeng Guan , Boye Han , Shang Wu , Xu Wang , Jing Yu , Junxia Zhang , Guoqiang Zhang , Qingfeng Miao , Suwen Su
Doxorubicin(DOX) is an anthracycline chemotherapeutic drug used in the treatment of a wide range of tumors. However, the nephrotoxicity has limited the clinical application of DOX. Fatty acid-binding protein 4 (FABP4), a key adipokine mainly expressed in adipocytes, is strongly associated with kidney dysfunction and kidney disease. This study aims to investigate the role of FABP4 in DOX-induced nephrotoxicity. In vivo experiments, the mice were divided into 4 groups randomly: CON group, DOX group, 4T1 group, and 4T1 + DOX group respectively. DOX was given by intraperitoneal injection at a dose of 15 mg/kg. The kidney function indicators, the morphology and lipid deposition in renal tissues and the preliminary mechanism were assessed. In vitro experiment, HK-2 cell was used to detect DOX-induced kidney cell injury with or without BMS309403. DOX caused renal dysfunction in both DOX group and 4T1 + DOX group, with a more severe kidney injury in DOX group. DOX also induced kidney lipid deposition, glycerophospholipids metabolism dysfunction, apoptosis accompanied by increased FABP4 and decreased Peroxisome Proliferator Activated Receptor- γ (PPAR-γ) levels in the kidney tissues. The decreased cell viability, increased apoptotic ratio, elevated protein levels of apoptosis and the lipid deposition caused by DOX were all alleviated by BMS309403. FABP4 mediated DOX induced kidney damage in normal mice and tumor-bearing mice by lipid metabolism disorders and cell apoptosis. This study may enhance the clinical management of DOX-induced kidney injury and provide new therapeutic targets and preventive strategies for the clinical application of DOX.
{"title":"Fatty acid binding protein 4 regulates doxorubicin-induced renal injury via mediating lipid metabolism and apoptosis","authors":"Chuchu Wang ,&nbsp;Tao Zhang ,&nbsp;Yufeng Guan ,&nbsp;Boye Han ,&nbsp;Shang Wu ,&nbsp;Xu Wang ,&nbsp;Jing Yu ,&nbsp;Junxia Zhang ,&nbsp;Guoqiang Zhang ,&nbsp;Qingfeng Miao ,&nbsp;Suwen Su","doi":"10.1016/j.cbi.2025.111419","DOIUrl":"10.1016/j.cbi.2025.111419","url":null,"abstract":"<div><div>Doxorubicin(DOX) is an anthracycline chemotherapeutic drug used in the treatment of a wide range of tumors. However, the nephrotoxicity has limited the clinical application of DOX. Fatty acid-binding protein 4 (FABP4), a key adipokine mainly expressed in adipocytes, is strongly associated with kidney dysfunction and kidney disease. This study aims to investigate the role of FABP4 in DOX-induced nephrotoxicity. <em>In vivo</em> experiments, the mice were divided into 4 groups randomly: CON group, DOX group, 4T1 group, and 4T1 + DOX group respectively. DOX was given by intraperitoneal injection at a dose of 15 mg/kg. The kidney function indicators, the morphology and lipid deposition in renal tissues and the preliminary mechanism were assessed. <em>In vitro</em> experiment, HK-2 cell was used to detect DOX-induced kidney cell injury with or without BMS309403. DOX caused renal dysfunction in both DOX group and 4T1 + DOX group, with a more severe kidney injury in DOX group. DOX also induced kidney lipid deposition, glycerophospholipids metabolism dysfunction, apoptosis accompanied by increased FABP4 and decreased Peroxisome Proliferator Activated Receptor- γ (PPAR-γ) levels in the kidney tissues. The decreased cell viability, increased apoptotic ratio, elevated protein levels of apoptosis and the lipid deposition caused by DOX were all alleviated by BMS309403. FABP4 mediated DOX induced kidney damage in normal mice and tumor-bearing mice by lipid metabolism disorders and cell apoptosis. This study may enhance the clinical management of DOX-induced kidney injury and provide new therapeutic targets and preventive strategies for the clinical application of DOX.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"408 ","pages":"Article 111419"},"PeriodicalIF":4.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143369848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple mechanisms of action of a triazole-derived salt against Leishmania amazonensis: Apoptosis-like death and autophagy
IF 4.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-06 DOI: 10.1016/j.cbi.2025.111409
Andrezza Rodrigues de Souza , Luciana Maria Ribeiro Antinarelli , Ari Sergio de Oliveira Lemos , Nicolas Glanzmann , Bruno Vicente , Victor do Valle Midlej , Adolfo Firmino da Silva Neto , Rachel Rocha Pinheiro Machado , Adilson David da Silva , Elaine Soares Coimbra
Current chemotherapy for leishmaniasis faces significant limitations due to high toxicity, prolonged treatment regimens, and increasing parasite resistance, highlighting the urgent need for innovative treatment strategies. This study aimed to evaluate the in vitro activity of 1,2,3-triazole derivatives against promastigotes and amastigotes of Leishmania amazonensis, as well as their cytotoxicity in murine macrophages. Additionally, we investigated the mechanism of parasite death through different biochemical and cellular indicators of cell death parameters. Our results underscored the importance of the salt form, as the neutral form showed no inhibition of parasite growth. In contrast, the triazole-derived salt demonstrated promising selective index (SI = 34.28) and antileishmanial activity (IC50 = 0.13 μM and IC50 = 2.06 μM against promastigote and amastigote forms, respectively), proving more active than miltefosine, the standard drug. Regarding the mode of action of the triazole-derived salt, this compound induced significant mitochondrial alterations in the parasite, characterized by an increase in mitochondrial membrane potential (ΔΨm), elevated levels of total and mitochondrial Reactive Oxygen Species (ROS), and lipid body accumulation in the cytoplasm. Treatment with triazole-derived salt also produced several ultrastructural, biochemical, and cellular changes in the promastigote forms, such as the occurrence of apoptosis-like death, including cell shrinkage and reduction in length, as well as exposure of phosphatidylserine in the outer leaflet of the plasma membrane and marked cell cycle interruption, in addition to DNA fragmentation. Despite MDC positive and the presence of membrane-bound vacuoles resembling autophagosomal structures observed by TEM analysis, autophagy is not a predominant process, with severe mitochondrial damage emerging as the primary event leading to parasite death. These findings demonstrate the promising antileishmanial potential of the triazole-derived salt, with its effect on multiple targets in parasite cells. Moreover, the association of the active compound with miltefosine showed an additive effect in treating L. amazonensis-infected macrophages. Altogether, these results highlight the therapeutic potential of the evaluated salt and support further studies to assess its in vivo efficacy in a murine model of cutaneous leishmaniasis.
{"title":"Multiple mechanisms of action of a triazole-derived salt against Leishmania amazonensis: Apoptosis-like death and autophagy","authors":"Andrezza Rodrigues de Souza ,&nbsp;Luciana Maria Ribeiro Antinarelli ,&nbsp;Ari Sergio de Oliveira Lemos ,&nbsp;Nicolas Glanzmann ,&nbsp;Bruno Vicente ,&nbsp;Victor do Valle Midlej ,&nbsp;Adolfo Firmino da Silva Neto ,&nbsp;Rachel Rocha Pinheiro Machado ,&nbsp;Adilson David da Silva ,&nbsp;Elaine Soares Coimbra","doi":"10.1016/j.cbi.2025.111409","DOIUrl":"10.1016/j.cbi.2025.111409","url":null,"abstract":"<div><div>Current chemotherapy for leishmaniasis faces significant limitations due to high toxicity, prolonged treatment regimens, and increasing parasite resistance, highlighting the urgent need for innovative treatment strategies. This study aimed to evaluate the <em>in vitro</em> activity of 1,2,3-triazole derivatives against promastigotes and amastigotes of <em>Leishmania amazonensis</em>, as well as their cytotoxicity in murine macrophages. Additionally, we investigated the mechanism of parasite death through different biochemical and cellular indicators of cell death parameters. Our results underscored the importance of the salt form, as the neutral form showed no inhibition of parasite growth. In contrast, the triazole-derived salt demonstrated promising selective index (SI = 34.28) and antileishmanial activity (IC<sub>50</sub> = 0.13 μM and IC<sub>50</sub> = 2.06 μM against promastigote and amastigote forms, respectively), proving more active than miltefosine, the standard drug. Regarding the mode of action of the triazole-derived salt, this compound induced significant mitochondrial alterations in the parasite, characterized by an increase in mitochondrial membrane potential (ΔΨm), elevated levels of total and mitochondrial Reactive Oxygen Species (ROS), and lipid body accumulation in the cytoplasm. Treatment with triazole-derived salt also produced several ultrastructural, biochemical, and cellular changes in the promastigote forms, such as the occurrence of apoptosis-<em>like</em> death, including cell shrinkage and reduction in length, as well as exposure of phosphatidylserine in the outer leaflet of the plasma membrane and marked cell cycle interruption, in addition to DNA fragmentation. Despite MDC positive and the presence of membrane-bound vacuoles resembling autophagosomal structures observed by TEM analysis, autophagy is not a predominant process, with severe mitochondrial damage emerging as the primary event leading to parasite death. These findings demonstrate the promising antileishmanial potential of the triazole-derived salt, with its effect on multiple targets in parasite cells. Moreover, the association of the active compound with miltefosine showed an additive effect in treating <em>L. amazonensis</em>-infected macrophages. Altogether, these results highlight the therapeutic potential of the evaluated salt and support further studies to assess its <em>in vivo</em> efficacy in a murine model of cutaneous leishmaniasis.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"409 ","pages":"Article 111409"},"PeriodicalIF":4.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemico-Biological Interactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1