Giant berry curvature in amorphous ferromagnet Co2MnGa

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-02-10 DOI:10.1016/j.matt.2025.101988
Weiyao Zhao, Yao Zhang, Yuefeng Yin, Kaijian Xing, Shengqiang Zhou, Abdulhakim Bake, Golrokh Akhgar, David Cortie, Lei Chen, Xiaolin Wang, Kirrily C. Rule, Nikhil V. Medkehar, Simon Granville, Julie Karel
{"title":"Giant berry curvature in amorphous ferromagnet Co2MnGa","authors":"Weiyao Zhao, Yao Zhang, Yuefeng Yin, Kaijian Xing, Shengqiang Zhou, Abdulhakim Bake, Golrokh Akhgar, David Cortie, Lei Chen, Xiaolin Wang, Kirrily C. Rule, Nikhil V. Medkehar, Simon Granville, Julie Karel","doi":"10.1016/j.matt.2025.101988","DOIUrl":null,"url":null,"abstract":"In amorphous materials, long-range translational order breaks down, and <em>k</em> is no longer a good quantum number; however, some of the phenomena, for instance ferromagnetic interactions and a mechanism similar to the Berry curvature, can be preserved. Here, we demonstrate a giant Berry-curvature-induced anomalous Hall effect and anomalous Hall angle in amorphous Co<sub>2</sub>MnGa (a-CMG) thin films. Remarkably, the effect presents the same magnitude as high-quality crystalline CMG with the L2<sub>1</sub> structure. The elastic neutron scattering peak in a-CMG is centered close to the crystalline phase, indicating that the amorphous material presents similar local atomic environments and magnetic interactions. First-principles density functional theory calculations further show that the anomalous Hall conductivity arises only when the local environments in the amorphous structure are similar to the L2<sub>1</sub> phase. Our work strongly points to the application of low-cost, industry-compatible, and thermally stable amorphous topological materials in emerging electronic and spintronic applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"51 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.101988","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In amorphous materials, long-range translational order breaks down, and k is no longer a good quantum number; however, some of the phenomena, for instance ferromagnetic interactions and a mechanism similar to the Berry curvature, can be preserved. Here, we demonstrate a giant Berry-curvature-induced anomalous Hall effect and anomalous Hall angle in amorphous Co2MnGa (a-CMG) thin films. Remarkably, the effect presents the same magnitude as high-quality crystalline CMG with the L21 structure. The elastic neutron scattering peak in a-CMG is centered close to the crystalline phase, indicating that the amorphous material presents similar local atomic environments and magnetic interactions. First-principles density functional theory calculations further show that the anomalous Hall conductivity arises only when the local environments in the amorphous structure are similar to the L21 phase. Our work strongly points to the application of low-cost, industry-compatible, and thermally stable amorphous topological materials in emerging electronic and spintronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Lattice distortion boosted exceptional electromagnetic wave absorption in high-entropy diborides Open-air spray deposition of PCBM/BCP electron transport layer for inverted perovskite solar cells Sustainable conversion of husk into viscoelastic hydrogels for value-added biomedical applications Exploring the soft cradle effect and ionic transport mechanisms in the LiMXCl4 superionic conductor family Intrinsic toughening in monolayer amorphous carbon nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1