Utilizing national wastewater and sales data to derive and validate the correction factors of five common antidepressants for wastewater-based epidemiology
Zeyang Zhao, Jingyi Yuan, Qiuda Zheng, Benjamin J. Tscharke, Tim Boogaerts, Zhe Wang, Shuo Chen, Jake W. O'Brien, Alexander L.N. van Nuijs, Adrian Covaci, Jochen Mueller, Phong K. Thai
{"title":"Utilizing national wastewater and sales data to derive and validate the correction factors of five common antidepressants for wastewater-based epidemiology","authors":"Zeyang Zhao, Jingyi Yuan, Qiuda Zheng, Benjamin J. Tscharke, Tim Boogaerts, Zhe Wang, Shuo Chen, Jake W. O'Brien, Alexander L.N. van Nuijs, Adrian Covaci, Jochen Mueller, Phong K. Thai","doi":"10.1016/j.watres.2025.123263","DOIUrl":null,"url":null,"abstract":"Monitoring antidepressant use is important for understanding mental health status in populations and detecting potential misuse. Wastewater-based epidemiology (WBE) is a cost-effective approach to conduct health monitoring but requires valid correction factors (CFs) to accurately convert wastewater per capita mass loads into consumption estimates. Most existing CFs are calculated from pharmacokinetic studies with small cohorts and are not specifically validated for WBE purposes. This study aimed to fill this knowledge gap by calibrating and validating the CFs for 5 commonly prescribed antidepressants. CFs were calibrated by dividing corresponding geo-located sales data by wastewater mass loads from 18 wastewater treatment plants in Australia for the same 3.5-year period. The refined CFs were 9.0 for fluoxetine, 6.4 for venlafaxine, and 25 for quetiapine. For the case of racemic citalopram and the pure S-enantiomer (escitalopram), individual CFs were proposed as 2.0 and 11, respectively. To validate their applicability, the new CFs were applied to independent datasets of wastewater samples collected in Belgium (2019 to 2022) and Australia (2020) and compared with sales data. The new calibrated CFs produced more accurate wastewater-based estimates of consumption for citalopram, escitalopram, fluoxetine, venlafaxine, and quetiapine, enhancing the capability of WBE in public health surveillance.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"8 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123263","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring antidepressant use is important for understanding mental health status in populations and detecting potential misuse. Wastewater-based epidemiology (WBE) is a cost-effective approach to conduct health monitoring but requires valid correction factors (CFs) to accurately convert wastewater per capita mass loads into consumption estimates. Most existing CFs are calculated from pharmacokinetic studies with small cohorts and are not specifically validated for WBE purposes. This study aimed to fill this knowledge gap by calibrating and validating the CFs for 5 commonly prescribed antidepressants. CFs were calibrated by dividing corresponding geo-located sales data by wastewater mass loads from 18 wastewater treatment plants in Australia for the same 3.5-year period. The refined CFs were 9.0 for fluoxetine, 6.4 for venlafaxine, and 25 for quetiapine. For the case of racemic citalopram and the pure S-enantiomer (escitalopram), individual CFs were proposed as 2.0 and 11, respectively. To validate their applicability, the new CFs were applied to independent datasets of wastewater samples collected in Belgium (2019 to 2022) and Australia (2020) and compared with sales data. The new calibrated CFs produced more accurate wastewater-based estimates of consumption for citalopram, escitalopram, fluoxetine, venlafaxine, and quetiapine, enhancing the capability of WBE in public health surveillance.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.