Ying Lu , Kejian Chu , Zulin Hua , Chang Gao , Yuanyuan Liu
{"title":"The response of PFAA mobility in highly contaminated sediment to sluice operation: Coupled effects of scour behavior and physicochemical properties","authors":"Ying Lu , Kejian Chu , Zulin Hua , Chang Gao , Yuanyuan Liu","doi":"10.1016/j.watres.2025.123260","DOIUrl":null,"url":null,"abstract":"<div><div>Despite their widespread occurrence and significant environmental implications, the influence of sluice operations on the mobility of perfluoroalkyl acid (PFAA) in riverine sediments remains largely unexplored. To address this gap, a series of flume experiments were conducted to simulate the sedimentary migration of PFAA under the turbulent conditions generated by opening a sluice. Our study provides novel insights into the mechanisms by which plunging turbulence modulates the transfer of sedimentary PFAAs across the sediment‒water interface. Significant transient release effects were observed in the dissolved and suspended particulate matter (SPM) phases of PFAA, with total concentrations maintaining relative stability over extended periods following disturbance. The fluviraption of plunging turbulence increased PFAA concentrations in the surface sedimentary and porewater phases but weakened the adsorption performance of resuspended particles for the chemicals in the lower reach of the sluice. The instantaneous release of PFAA from sediment, fueled by turbulence, was identified as the primary driver of total mass transfer across the interface, increasing exponentially with the Reynolds number (Re<sub>x</sub>, R<sup>2</sup>=0.99, <em>p</em> < 0.01). Notably, the peak PFAA release flux in the SPM phase lagged behind that in the dissolved phase, underscoring the dynamic interplay between phases. A structural equation model (SEM) revealed that plunging turbulence indirectly governs the cross-interface transfer of sedimentary PFAA by altering environmental physicochemical parameters and enhancing porewater diffusion. This finding underscores the complex, coupled effects of scour behavior and physicochemical properties on PFAA fate. Our study offers a unique perspective on the dynamic mechanisms underlying PFAA multimedia migration under sluice operation, contributing valuable insights for managing and regulating these emerging contaminants in aquatic environments.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"276 ","pages":"Article 123260"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425001745","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their widespread occurrence and significant environmental implications, the influence of sluice operations on the mobility of perfluoroalkyl acid (PFAA) in riverine sediments remains largely unexplored. To address this gap, a series of flume experiments were conducted to simulate the sedimentary migration of PFAA under the turbulent conditions generated by opening a sluice. Our study provides novel insights into the mechanisms by which plunging turbulence modulates the transfer of sedimentary PFAAs across the sediment‒water interface. Significant transient release effects were observed in the dissolved and suspended particulate matter (SPM) phases of PFAA, with total concentrations maintaining relative stability over extended periods following disturbance. The fluviraption of plunging turbulence increased PFAA concentrations in the surface sedimentary and porewater phases but weakened the adsorption performance of resuspended particles for the chemicals in the lower reach of the sluice. The instantaneous release of PFAA from sediment, fueled by turbulence, was identified as the primary driver of total mass transfer across the interface, increasing exponentially with the Reynolds number (Rex, R2=0.99, p < 0.01). Notably, the peak PFAA release flux in the SPM phase lagged behind that in the dissolved phase, underscoring the dynamic interplay between phases. A structural equation model (SEM) revealed that plunging turbulence indirectly governs the cross-interface transfer of sedimentary PFAA by altering environmental physicochemical parameters and enhancing porewater diffusion. This finding underscores the complex, coupled effects of scour behavior and physicochemical properties on PFAA fate. Our study offers a unique perspective on the dynamic mechanisms underlying PFAA multimedia migration under sluice operation, contributing valuable insights for managing and regulating these emerging contaminants in aquatic environments.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.