{"title":"Quantum error mitigation for Fourier moment computation","authors":"Oriel Kiss, Michele Grossi, Alessandro Roggero","doi":"10.1103/physrevd.111.034504","DOIUrl":null,"url":null,"abstract":"Hamiltonian moments in Fourier space—expectation values of the unitary evolution operator under a Hamiltonian at different times—provide a convenient framework to understand quantum systems. They offer insights into the energy distribution, higher-order dynamics, response functions, correlation information, and physical properties. This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware. The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates. These techniques, combined with purification and error suppression methods, effectively address quantum hardware decoherence. The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude. Moreover, quantum circuits involving up to 266 gates over five qubits demonstrate high accuracy under these methodologies when run on IBM superconducting quantum devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"12 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Hamiltonian moments in Fourier space—expectation values of the unitary evolution operator under a Hamiltonian at different times—provide a convenient framework to understand quantum systems. They offer insights into the energy distribution, higher-order dynamics, response functions, correlation information, and physical properties. This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware. The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates. These techniques, combined with purification and error suppression methods, effectively address quantum hardware decoherence. The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude. Moreover, quantum circuits involving up to 266 gates over five qubits demonstrate high accuracy under these methodologies when run on IBM superconducting quantum devices. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.