Kari E. Norris, Joseph J. Pignatello, Elena A. Vialykh, Michael Sander, Kristopher McNeill, Fernando L. Rosario-Ortiz
{"title":"Recent Developments on the Three-Dimensional Structure of Dissolved Organic Matter: Toward a Unified Description","authors":"Kari E. Norris, Joseph J. Pignatello, Elena A. Vialykh, Michael Sander, Kristopher McNeill, Fernando L. Rosario-Ortiz","doi":"10.1021/acs.est.4c09627","DOIUrl":null,"url":null,"abstract":"Advancing a common understanding about the chemical composition, size, and three-dimensional (3D) structure of dissolved organic matter (DOM) is paramount to deciphering its impact on and involvement in environmental processes, such as the fate and transport of contaminants and carbon cycling. Traditionally, DOM has been described as a collection of solvent-separated molecules or macromolecules. More recently, DOM has been depicted as a “supramolecular assembly”, a collection of individual molecules and associations of molecules held together by non-covalent interactions. The supramolecular assembly model has been broadly invoked to rationalize certain behaviors and properties of DOM, yet the complexity of DOM has made it difficult to fully unravel the nature and contributions of its intermolecular interactions. Discussed in this perspective is evidence regarding thermodynamic drivers of intermolecular associations, DOM molecular size, sorption of organic contaminants to DOM, and optical properties of DOM. While single observations may be rationalized by former structural models, such as the supramolecular assembly model, combined evidence shows that the 3D structure of DOM is best described by a mixed dynamic assembly model (MDAM). The MDAM depicts DOM as a collection of solvent-separated molecules and small, tightly knit assemblies held together by strong hydrogen bonds, which may form large assemblies through weak intermolecular interactions only at specific pH values, high ionic strength, or high DOM concentration.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"60 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09627","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advancing a common understanding about the chemical composition, size, and three-dimensional (3D) structure of dissolved organic matter (DOM) is paramount to deciphering its impact on and involvement in environmental processes, such as the fate and transport of contaminants and carbon cycling. Traditionally, DOM has been described as a collection of solvent-separated molecules or macromolecules. More recently, DOM has been depicted as a “supramolecular assembly”, a collection of individual molecules and associations of molecules held together by non-covalent interactions. The supramolecular assembly model has been broadly invoked to rationalize certain behaviors and properties of DOM, yet the complexity of DOM has made it difficult to fully unravel the nature and contributions of its intermolecular interactions. Discussed in this perspective is evidence regarding thermodynamic drivers of intermolecular associations, DOM molecular size, sorption of organic contaminants to DOM, and optical properties of DOM. While single observations may be rationalized by former structural models, such as the supramolecular assembly model, combined evidence shows that the 3D structure of DOM is best described by a mixed dynamic assembly model (MDAM). The MDAM depicts DOM as a collection of solvent-separated molecules and small, tightly knit assemblies held together by strong hydrogen bonds, which may form large assemblies through weak intermolecular interactions only at specific pH values, high ionic strength, or high DOM concentration.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.