{"title":"A Nationwide Investigation of Substituted p-Phenylenediamines (PPDs) and PPD-Quinones in the Riverine Waters of China","authors":"Ningbo Geng, Shijiao Hou, Shuai Sun, Rong Cao, Haijun Zhang, Xianbo Lu, Shusheng Zhang, Jiping Chen, Yanhao Zhang","doi":"10.1021/acs.est.4c09519","DOIUrl":null,"url":null,"abstract":"<i>N</i>-(1,3-Dimethylbutyl)-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine-quinone (6PPD-Q) has been identified as the cause of the “urban runoff mortality syndrome.” Thus, the ecological risks of substituted <i>p</i>-phenylenediamines (PPDs) and their quinone derivatives (PPD-Qs) in water have gained global attention. However, large-scale observation of their pollution characteristics in surface water is still lacking. Herein, a nationwide investigation revealed the pervasive occurrence of PPDs and PPD-Qs in riverine waters across China, with the mean concentration of ∑<sub>5</sub>PPD-Qs being 4.9 times higher than their parent ∑<sub>5</sub>PPDs. Notably, the 6PPD-Q concentrations at eight sampling sites exceeded the median lethal concentration for <i>coho</i> salmon. National annual riverine fluxes were estimated at 113.1 and 276.2 tonnes/year for PPDs and PPD-Qs, respectively, with the Yangtze River contributing more than one-third of the total fluxes. The transformation of PPDs to PPD-Qs was dependent on atmospheric hydroxylation rates and the half-lives of PPDs. A combined multimedia exposure assessment revealed that water exposure accounted for 82.5% of human exposure to PPDs and PPD-Qs, surpassing the contributions from dust and air exposure. This study provides a comprehensive spatial picture of PPDs and PPD-Qs in China. The national atlas highlights their potential ecological risks and implies that targeted actions should be taken to mitigate potential exposure to PPDs and PPD-Qs.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"13 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09519","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-Q) has been identified as the cause of the “urban runoff mortality syndrome.” Thus, the ecological risks of substituted p-phenylenediamines (PPDs) and their quinone derivatives (PPD-Qs) in water have gained global attention. However, large-scale observation of their pollution characteristics in surface water is still lacking. Herein, a nationwide investigation revealed the pervasive occurrence of PPDs and PPD-Qs in riverine waters across China, with the mean concentration of ∑5PPD-Qs being 4.9 times higher than their parent ∑5PPDs. Notably, the 6PPD-Q concentrations at eight sampling sites exceeded the median lethal concentration for coho salmon. National annual riverine fluxes were estimated at 113.1 and 276.2 tonnes/year for PPDs and PPD-Qs, respectively, with the Yangtze River contributing more than one-third of the total fluxes. The transformation of PPDs to PPD-Qs was dependent on atmospheric hydroxylation rates and the half-lives of PPDs. A combined multimedia exposure assessment revealed that water exposure accounted for 82.5% of human exposure to PPDs and PPD-Qs, surpassing the contributions from dust and air exposure. This study provides a comprehensive spatial picture of PPDs and PPD-Qs in China. The national atlas highlights their potential ecological risks and implies that targeted actions should be taken to mitigate potential exposure to PPDs and PPD-Qs.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.