A Nationwide Investigation of Substituted p-Phenylenediamines (PPDs) and PPD-Quinones in the Riverine Waters of China

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-02-10 DOI:10.1021/acs.est.4c09519
Ningbo Geng, Shijiao Hou, Shuai Sun, Rong Cao, Haijun Zhang, Xianbo Lu, Shusheng Zhang, Jiping Chen, Yanhao Zhang
{"title":"A Nationwide Investigation of Substituted p-Phenylenediamines (PPDs) and PPD-Quinones in the Riverine Waters of China","authors":"Ningbo Geng, Shijiao Hou, Shuai Sun, Rong Cao, Haijun Zhang, Xianbo Lu, Shusheng Zhang, Jiping Chen, Yanhao Zhang","doi":"10.1021/acs.est.4c09519","DOIUrl":null,"url":null,"abstract":"<i>N</i>-(1,3-Dimethylbutyl)-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine-quinone (6PPD-Q) has been identified as the cause of the “urban runoff mortality syndrome.” Thus, the ecological risks of substituted <i>p</i>-phenylenediamines (PPDs) and their quinone derivatives (PPD-Qs) in water have gained global attention. However, large-scale observation of their pollution characteristics in surface water is still lacking. Herein, a nationwide investigation revealed the pervasive occurrence of PPDs and PPD-Qs in riverine waters across China, with the mean concentration of ∑<sub>5</sub>PPD-Qs being 4.9 times higher than their parent ∑<sub>5</sub>PPDs. Notably, the 6PPD-Q concentrations at eight sampling sites exceeded the median lethal concentration for <i>coho</i> salmon. National annual riverine fluxes were estimated at 113.1 and 276.2 tonnes/year for PPDs and PPD-Qs, respectively, with the Yangtze River contributing more than one-third of the total fluxes. The transformation of PPDs to PPD-Qs was dependent on atmospheric hydroxylation rates and the half-lives of PPDs. A combined multimedia exposure assessment revealed that water exposure accounted for 82.5% of human exposure to PPDs and PPD-Qs, surpassing the contributions from dust and air exposure. This study provides a comprehensive spatial picture of PPDs and PPD-Qs in China. The national atlas highlights their potential ecological risks and implies that targeted actions should be taken to mitigate potential exposure to PPDs and PPD-Qs.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"13 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09519","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-Q) has been identified as the cause of the “urban runoff mortality syndrome.” Thus, the ecological risks of substituted p-phenylenediamines (PPDs) and their quinone derivatives (PPD-Qs) in water have gained global attention. However, large-scale observation of their pollution characteristics in surface water is still lacking. Herein, a nationwide investigation revealed the pervasive occurrence of PPDs and PPD-Qs in riverine waters across China, with the mean concentration of ∑5PPD-Qs being 4.9 times higher than their parent ∑5PPDs. Notably, the 6PPD-Q concentrations at eight sampling sites exceeded the median lethal concentration for coho salmon. National annual riverine fluxes were estimated at 113.1 and 276.2 tonnes/year for PPDs and PPD-Qs, respectively, with the Yangtze River contributing more than one-third of the total fluxes. The transformation of PPDs to PPD-Qs was dependent on atmospheric hydroxylation rates and the half-lives of PPDs. A combined multimedia exposure assessment revealed that water exposure accounted for 82.5% of human exposure to PPDs and PPD-Qs, surpassing the contributions from dust and air exposure. This study provides a comprehensive spatial picture of PPDs and PPD-Qs in China. The national atlas highlights their potential ecological risks and implies that targeted actions should be taken to mitigate potential exposure to PPDs and PPD-Qs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Sustained Increases in Hydrofluorocarbon Emissions from China and Implications for Global Emissions Number of Carbons Is a Critical Parameter for Accumulation of Per- and Polyfluoroalkyl Substances in the Human Brain Recent Developments on the Three-Dimensional Structure of Dissolved Organic Matter: Toward a Unified Description A Nationwide Investigation of Substituted p-Phenylenediamines (PPDs) and PPD-Quinones in the Riverine Waters of China Carbonation of MgO Single Crystals: Implications for Direct Air Capture of CO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1