Gradient-structured polyimide nonwoven fabrics for intelligent adjustable low-reflection electromagnetic interference shielding

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2025-02-07 DOI:10.1016/j.mtnano.2025.100586
Xinwei Tang , Hongmiao Gao , Xu Zhao , Kaixin Lai, Shuangshuang Li, Mingyang Zhu, Zicheng Wang, Tianxi Liu
{"title":"Gradient-structured polyimide nonwoven fabrics for intelligent adjustable low-reflection electromagnetic interference shielding","authors":"Xinwei Tang ,&nbsp;Hongmiao Gao ,&nbsp;Xu Zhao ,&nbsp;Kaixin Lai,&nbsp;Shuangshuang Li,&nbsp;Mingyang Zhu,&nbsp;Zicheng Wang,&nbsp;Tianxi Liu","doi":"10.1016/j.mtnano.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and fabricating a low-reflection electromagnetic interference (EMI) shielding materials possess a critical significance in the field of military. Hence, a gradient-structured polyimide nonwoven fabric is successfully fabricated by in-situ electrospinning, chemical imidization, single-sided alkali treatment, and liquid metal (LM) spraying process. Thermally expandable microspheres (EM), carbon nanotubes (CNT) and iron flakes (ZAF-5) are in-situ introduced into polyimide (PI) nonwoven fabric (PMCZ). The presence of CNT and ZAF-5 endows composite with excellent electromagnetic dissipation characteristics. Single-sided alkali treatment promotes liquid metal to spread on the surface of PI fiber. As a result, an excellent impedance gradient structure can be constructed, inducing more EMW enter the composite and be dissipated as much as possible. Specifically, an effective thermal stimulation of EM facilitates the further optimization of impedance gradient matching characteristic, bringing intelligent adjustable EMI shielding performance with an ultralow reflection coefficient of 0.24. Additionally, the formation of fluffier free-space structure of PMCZ and the low infrared emissivity of LM synergistically endow it with an excellent high-temperature resistant infrared stealth performance. As a consequence, such intelligent adjustable low-reflection EMI shielding and infrared stealth performance make it promising to be applied in military tents.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100586"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000173","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing and fabricating a low-reflection electromagnetic interference (EMI) shielding materials possess a critical significance in the field of military. Hence, a gradient-structured polyimide nonwoven fabric is successfully fabricated by in-situ electrospinning, chemical imidization, single-sided alkali treatment, and liquid metal (LM) spraying process. Thermally expandable microspheres (EM), carbon nanotubes (CNT) and iron flakes (ZAF-5) are in-situ introduced into polyimide (PI) nonwoven fabric (PMCZ). The presence of CNT and ZAF-5 endows composite with excellent electromagnetic dissipation characteristics. Single-sided alkali treatment promotes liquid metal to spread on the surface of PI fiber. As a result, an excellent impedance gradient structure can be constructed, inducing more EMW enter the composite and be dissipated as much as possible. Specifically, an effective thermal stimulation of EM facilitates the further optimization of impedance gradient matching characteristic, bringing intelligent adjustable EMI shielding performance with an ultralow reflection coefficient of 0.24. Additionally, the formation of fluffier free-space structure of PMCZ and the low infrared emissivity of LM synergistically endow it with an excellent high-temperature resistant infrared stealth performance. As a consequence, such intelligent adjustable low-reflection EMI shielding and infrared stealth performance make it promising to be applied in military tents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Flexible ultrabroadband near-perfect absorber enabled by synergistic effects of cavity mode overlap and broadband anti-reflection A novel flexible non-enzymatic composite-metal glucose detection sensor in sweat based on platinum in situ plating of liquid metal Surfactant-free colloidal gold nanoparticles: Room temperature synthesis, size control and opportunities for catalysis Hydrogen nanosensors based on core/shell ZnO/Al2O3 and ZnO/ZnAl2O4 single nanowires Silver nanocubes/nano mica platelets flexible nanohybrid substrates modified by zinc oxide quantum dots with synergistic 3D lightning rod effect, and electromagnetic and chemical enhancements for highly sensitive SERS bacterial biosensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1