DockCADD: A streamlined in silico pipeline for the identification of potent ribosomal S6 Kinase 2 (RSK2) inhibitors

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2025-02-05 DOI:10.1016/j.sciaf.2025.e02581
El Mehdi Karim , Meriem Khedraoui , Abdelkbir Errougui , Yasir S. Raouf , Abdelouahid Samadi , Samir Chtita
{"title":"DockCADD: A streamlined in silico pipeline for the identification of potent ribosomal S6 Kinase 2 (RSK2) inhibitors","authors":"El Mehdi Karim ,&nbsp;Meriem Khedraoui ,&nbsp;Abdelkbir Errougui ,&nbsp;Yasir S. Raouf ,&nbsp;Abdelouahid Samadi ,&nbsp;Samir Chtita","doi":"10.1016/j.sciaf.2025.e02581","DOIUrl":null,"url":null,"abstract":"<div><div>The search for innovative therapeutic strategies remains critical in addressing cancer, one of the leading global health challenges. Ribosomal S6 Kinase 2 (RSK2), a serine/threonine kinase, has emerged as a promising target for cancer therapy because it is implicated in oncogenic signaling. Herein, we developed an open-source computational pipeline, identified as DockCADD (available at <span><span>https://github.com/mehdikariim/DockCADD</span><svg><path></path></svg></span>), which enables the identification of potent RSK2 inhibitors by automated virtual screening, ADME-Tox profiling, and molecular dynamics (MD) simulations. Employing pyran derivatives as the scaffold, top-scoring inhibitors as identified by the pipeline showed scores ranging from -9.46 to -9.89 kcal/mol and binding free energies ranging from -53.731 to -55.193 kcal/mol. Ligands L1, L2 and L3 showed stable binding within the ATP-binding pocket, wherein the compounds undergo slight structural distortions with a favorable van der Waal's interaction. The ligand L3 has exhibited the highest MM-GBSA binding free energy (-55.193 kcal/mol), which so far presents the most promising candidate. These results have pointed out the use of DockCADD as an efficient tool for the fast and low-cost process of drug discovery; L1–L3 should be further validated experimentally for cancer therapy.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02581"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The search for innovative therapeutic strategies remains critical in addressing cancer, one of the leading global health challenges. Ribosomal S6 Kinase 2 (RSK2), a serine/threonine kinase, has emerged as a promising target for cancer therapy because it is implicated in oncogenic signaling. Herein, we developed an open-source computational pipeline, identified as DockCADD (available at https://github.com/mehdikariim/DockCADD), which enables the identification of potent RSK2 inhibitors by automated virtual screening, ADME-Tox profiling, and molecular dynamics (MD) simulations. Employing pyran derivatives as the scaffold, top-scoring inhibitors as identified by the pipeline showed scores ranging from -9.46 to -9.89 kcal/mol and binding free energies ranging from -53.731 to -55.193 kcal/mol. Ligands L1, L2 and L3 showed stable binding within the ATP-binding pocket, wherein the compounds undergo slight structural distortions with a favorable van der Waal's interaction. The ligand L3 has exhibited the highest MM-GBSA binding free energy (-55.193 kcal/mol), which so far presents the most promising candidate. These results have pointed out the use of DockCADD as an efficient tool for the fast and low-cost process of drug discovery; L1–L3 should be further validated experimentally for cancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DockCADD:一个用于鉴定强效核糖体S6激酶2 (RSK2)抑制剂的流线型硅管道
寻求创新的治疗策略对于解决癌症这一主要的全球健康挑战仍然至关重要。核糖体S6激酶2 (RSK2)是一种丝氨酸/苏氨酸激酶,已成为癌症治疗的一个有希望的靶点,因为它与致癌信号传导有关。在此,我们开发了一个开源计算管道,被确定为DockCADD(可在https://github.com/mehdikariim/DockCADD获得),它可以通过自动虚拟筛选,ADME-Tox分析和分子动力学(MD)模拟来识别有效的RSK2抑制剂。以吡喃衍生物为骨架,通过管道鉴定出得分最高的抑制剂,其得分范围为-9.46 ~ -9.89 kcal/mol,结合自由能范围为-53.731 ~ -55.193 kcal/mol。配体L1、L2和L3在atp结合口袋内表现出稳定的结合,其中化合物发生轻微的结构畸变,具有良好的范德华相互作用。配体L3的MM-GBSA结合自由能最高(-55.193 kcal/mol),是目前最有希望的候选配体。这些结果表明DockCADD是一种快速、低成本的药物发现过程的有效工具;L1-L3在癌症治疗方面有待进一步的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
Corrigendum to “Stability analysis of a fractional order unemployment model with a non-linear job creation” [Scientific African, Volume 29 (2025), Article e02828] NEETs phenomenon as a socioeconomic epidemic: Support for policymakers on the role of migration aspirations and proximity to economic powers Forecasting temperature data for two counties in California using the stress–strength reliability of the MO q-GEVL distribution: A return level based approach and time series Integrating GOF tests and cross validation for copula model selection Performance enhancement of a single-cylinder gasoline engine through hydraulic variable valve actuation (HVVA) system integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1