Fangfang Shan , Yanlong Lu , Shuaifeng Li , Shiqi Mao , Yuang Li , Xin Wang
{"title":"Efficient adaptive defense scheme for differential privacy in federated learning","authors":"Fangfang Shan , Yanlong Lu , Shuaifeng Li , Shiqi Mao , Yuang Li , Xin Wang","doi":"10.1016/j.jisa.2025.103992","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning, as an emerging technology in the field of artificial intelligence, effectively addresses the issue of data islands while ensuring privacy protection. However, studies have shown that by analyzing gradient updates, leaked gradient information can still be used to reconstruct original data, thus inferring private information. In recent years, differential privacy techniques have been widely applied to federated learning to enhance data privacy protection. However, the noise introduced often significantly reduces the learning performance. Previous studies typically employed a fixed gradient clipping strategy with added fixed noise. Although this method offers privacy protection, it remains vulnerable to gradient leakage attacks, and training performance is often subpar. Although subsequent proposals of dynamic differential privacy parameters aim to address the issue of model utility, frequent parameter adjustments lead to reduced efficiency. To solve these issues, this paper proposes an efficient federated learning differential privacy protection framework with noise attenuation and automatic pruning (EADS-DPFL). This framework not only effectively defends against gradient leakage attacks but also significantly improves the training performance of federated learning models.</div><div>Extensive experimental results demonstrate that our framework outperforms existing differential privacy federated learning schemes in terms of model accuracy, convergence speed, and resistance to attacks.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"89 ","pages":"Article 103992"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000304","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning, as an emerging technology in the field of artificial intelligence, effectively addresses the issue of data islands while ensuring privacy protection. However, studies have shown that by analyzing gradient updates, leaked gradient information can still be used to reconstruct original data, thus inferring private information. In recent years, differential privacy techniques have been widely applied to federated learning to enhance data privacy protection. However, the noise introduced often significantly reduces the learning performance. Previous studies typically employed a fixed gradient clipping strategy with added fixed noise. Although this method offers privacy protection, it remains vulnerable to gradient leakage attacks, and training performance is often subpar. Although subsequent proposals of dynamic differential privacy parameters aim to address the issue of model utility, frequent parameter adjustments lead to reduced efficiency. To solve these issues, this paper proposes an efficient federated learning differential privacy protection framework with noise attenuation and automatic pruning (EADS-DPFL). This framework not only effectively defends against gradient leakage attacks but also significantly improves the training performance of federated learning models.
Extensive experimental results demonstrate that our framework outperforms existing differential privacy federated learning schemes in terms of model accuracy, convergence speed, and resistance to attacks.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.