Xiaoliang Wang , Peng Zeng , Guikai Liu , Kuan-Ching Li , Yuzhen Liu , Biao Hu , Francesco Palmieri
{"title":"A privacy-preserving certificate-less aggregate signature scheme with detectable invalid signatures for VANETs","authors":"Xiaoliang Wang , Peng Zeng , Guikai Liu , Kuan-Ching Li , Yuzhen Liu , Biao Hu , Francesco Palmieri","doi":"10.1016/j.jisa.2025.104001","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicular Ad-hoc Networks (VANETs) have significantly improved the efficiency of traffic systems, but there are many security concerns, such as reliable message exchange and privacy-preserving. Besides, under resource-limited conditions, many signed safety-related messages need to be verified in a short period of time. For such, many Certificate-Less Aggregate Signature (CLAS) schemes are proposed. However, some existing CLAS schemes need an efficient algorithm to detect invalid signatures when aggregate verification fails or the proposed algorithms have some unnecessary computation overhead. To overcome such issues, we propose an efficient CLAS scheme that not only fulfills security requirements in VANETs but also provides an improved algorithm to detect invalid signatures with the corresponding real identities. In addition, under the Random Oracle Model (ROM) based Computational Diffie–Hellman (CDH) assumption, we demonstrate that the proposed CLAS scheme is existentially unforgeable under adaptively chosen message attacks (EUF-ACMAs). Performance analysis shows that the proposed scheme is more advantageous in terms of computation overhead and security than other existing schemes.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"89 ","pages":"Article 104001"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000390","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicular Ad-hoc Networks (VANETs) have significantly improved the efficiency of traffic systems, but there are many security concerns, such as reliable message exchange and privacy-preserving. Besides, under resource-limited conditions, many signed safety-related messages need to be verified in a short period of time. For such, many Certificate-Less Aggregate Signature (CLAS) schemes are proposed. However, some existing CLAS schemes need an efficient algorithm to detect invalid signatures when aggregate verification fails or the proposed algorithms have some unnecessary computation overhead. To overcome such issues, we propose an efficient CLAS scheme that not only fulfills security requirements in VANETs but also provides an improved algorithm to detect invalid signatures with the corresponding real identities. In addition, under the Random Oracle Model (ROM) based Computational Diffie–Hellman (CDH) assumption, we demonstrate that the proposed CLAS scheme is existentially unforgeable under adaptively chosen message attacks (EUF-ACMAs). Performance analysis shows that the proposed scheme is more advantageous in terms of computation overhead and security than other existing schemes.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.