Machine-learning assisted novel insulation layer stripping technology for upgrading the transparent EMI shielding materials

IF 10.9 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-02-10 DOI:10.1016/j.nantod.2025.102660
Yilin Hao , Chuyang Liu , Rapkatjan Keram , Huaxin Song , Yujing Zhang , Guangbin Ji
{"title":"Machine-learning assisted novel insulation layer stripping technology for upgrading the transparent EMI shielding materials","authors":"Yilin Hao ,&nbsp;Chuyang Liu ,&nbsp;Rapkatjan Keram ,&nbsp;Huaxin Song ,&nbsp;Yujing Zhang ,&nbsp;Guangbin Ji","doi":"10.1016/j.nantod.2025.102660","DOIUrl":null,"url":null,"abstract":"<div><div>Silver nanowires (AgNW) hold immense potential to be promoted as competitive transparent electromagnetic interference (EMI) shielding materials. To remove the insulating polyvinyl pyrrolidone (PVP) layer on the surface of AgNW, a machine learning prediction framework (MLPF) is proposed to offer guidance for a novel approach to remove insulating layers of AgNW in the films state. The trained machine learning model achieves an R<sup>2</sup> value of 0.82 on the test set, demonstrating exceptional generalization capabilities. Through experimental validation, the machine-learning assisted stripping process significantly improves the SE values of AgNW film from 20.81 dB to 28.66 dB, representing a percentage improvement of 37.72 % and maintaining high light transmittance of 82 % at 550 nm. Designed framework not only provides a brand new strategy to remove the PVP effectively, but also expands the application of machine learning in the realm of upgrading transparent EMI shielding materials for the first time.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102660"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000325","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silver nanowires (AgNW) hold immense potential to be promoted as competitive transparent electromagnetic interference (EMI) shielding materials. To remove the insulating polyvinyl pyrrolidone (PVP) layer on the surface of AgNW, a machine learning prediction framework (MLPF) is proposed to offer guidance for a novel approach to remove insulating layers of AgNW in the films state. The trained machine learning model achieves an R2 value of 0.82 on the test set, demonstrating exceptional generalization capabilities. Through experimental validation, the machine-learning assisted stripping process significantly improves the SE values of AgNW film from 20.81 dB to 28.66 dB, representing a percentage improvement of 37.72 % and maintaining high light transmittance of 82 % at 550 nm. Designed framework not only provides a brand new strategy to remove the PVP effectively, but also expands the application of machine learning in the realm of upgrading transparent EMI shielding materials for the first time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习辅助下的新型绝缘层剥离技术升级透明电磁干扰屏蔽材料
银纳米线(AgNW)作为透明电磁干扰(EMI)屏蔽材料具有巨大的潜力。为了去除AgNW表面的绝缘层聚乙烯吡咯烷酮(PVP)层,提出了一种机器学习预测框架(MLPF),为去除薄膜状态下AgNW绝缘层的新方法提供指导。经过训练的机器学习模型在测试集上的R2值为0.82,显示出出色的泛化能力。通过实验验证,机器学习辅助剥离工艺将AgNW薄膜的SE值从20.81 dB提高到28.66 dB,提高了37.72 %,在550 nm处保持了82 %的高透光率。设计的框架不仅提供了一种有效消除PVP的全新策略,而且首次扩展了机器学习在透明EMI屏蔽材料升级领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Biomimetic nanomaterial-based strategies for spinal cord injury repair Manganese in metalloimmunotherapy: From molecular targets to material engineering and translational therapeutics Controlled epitaxy of perovskite van der waals heterostructures enables advanced self-powered broadband photodetectors Nanoengineered living macrophages as ultrasound imaging-trackable cell extinguishers inhibit pyroptosis in atherosclerotic plaque Inflammatory environment-responsive nanomicelles targeting CD44 alleviate allergic asthma by inhibiting the TLR4/MyD88-NFκB pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1