Dark brain energy: Toward an integrative model of spontaneous slow oscillations

IF 13.7 1区 生物学 Q1 BIOLOGY Physics of Life Reviews Pub Date : 2025-02-07 DOI:10.1016/j.plrev.2025.02.001
Zhu-Qing Gong , Xi-Nian Zuo
{"title":"Dark brain energy: Toward an integrative model of spontaneous slow oscillations","authors":"Zhu-Qing Gong ,&nbsp;Xi-Nian Zuo","doi":"10.1016/j.plrev.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Neural oscillations facilitate the functioning of the human brain in spatial and temporal dimensions at various frequencies. These oscillations feature a universal frequency architecture that is governed by brain anatomy, ensuring frequency specificity remains invariant across different measurement techniques. Initial magnetic resonance imaging (MRI) methodology constrained functional MRI (fMRI) investigations to a singular frequency range, thereby neglecting the frequency characteristics inherent in blood oxygen level-dependent oscillations. With advancements in MRI technology, it has become feasible to decode intricate brain activities via multi-band frequency analysis (MBFA). During the past decade, the utilization of MBFA in fMRI studies has surged, unveiling frequency-dependent characteristics of spontaneous slow oscillations (SSOs) believed to base dark energy in the brain. There remains a dearth of conclusive insights and hypotheses pertaining to the properties and functionalities of SSOs in distinct bands. We surveyed the SSO MBFA studies during the past 15 years to delineate the attributes of SSOs and enlighten their correlated functions. We further proposed a model to elucidate the hierarchical organization of multi-band SSOs by integrating their function, aimed at bridging theoretical gaps and guiding future MBFA research endeavors.</div></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"52 ","pages":"Pages 278-297"},"PeriodicalIF":13.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064525000120","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural oscillations facilitate the functioning of the human brain in spatial and temporal dimensions at various frequencies. These oscillations feature a universal frequency architecture that is governed by brain anatomy, ensuring frequency specificity remains invariant across different measurement techniques. Initial magnetic resonance imaging (MRI) methodology constrained functional MRI (fMRI) investigations to a singular frequency range, thereby neglecting the frequency characteristics inherent in blood oxygen level-dependent oscillations. With advancements in MRI technology, it has become feasible to decode intricate brain activities via multi-band frequency analysis (MBFA). During the past decade, the utilization of MBFA in fMRI studies has surged, unveiling frequency-dependent characteristics of spontaneous slow oscillations (SSOs) believed to base dark energy in the brain. There remains a dearth of conclusive insights and hypotheses pertaining to the properties and functionalities of SSOs in distinct bands. We surveyed the SSO MBFA studies during the past 15 years to delineate the attributes of SSOs and enlighten their correlated functions. We further proposed a model to elucidate the hierarchical organization of multi-band SSOs by integrating their function, aimed at bridging theoretical gaps and guiding future MBFA research endeavors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Life Reviews
Physics of Life Reviews 生物-生物物理
CiteScore
20.30
自引率
14.50%
发文量
52
审稿时长
8 days
期刊介绍: Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.
期刊最新文献
Dark brain energy: Toward an integrative model of spontaneous slow oscillations Thoughts, loud and silent. Comment on “The sound of thought: Form matters – The prosody of inner speech” by Kreiner and Eviatar Speech: A skeleton for thought? Comment on “The sound of thought: Form matters – The prosody of inner speech” by Hamutal Kreiner, Zohar Eviatar Reasonings on multiple strategies in differential systems Thoughts and thinkers: On the complementarity between objects and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1