Asymmetric representation of symmetric semantic information in the human brain

Q4 Neuroscience Neuroimage. Reports Pub Date : 2025-02-09 DOI:10.1016/j.ynirp.2025.100243
Jiaxin Wang , Kiichi Kawahata , Antoine Blanc , Naoya Maeda , Shinji Nishimoto , Satoshi Nishida
{"title":"Asymmetric representation of symmetric semantic information in the human brain","authors":"Jiaxin Wang ,&nbsp;Kiichi Kawahata ,&nbsp;Antoine Blanc ,&nbsp;Naoya Maeda ,&nbsp;Shinji Nishimoto ,&nbsp;Satoshi Nishida","doi":"10.1016/j.ynirp.2025.100243","DOIUrl":null,"url":null,"abstract":"<div><div>Specific pairs of semantic entities have symmetric relationships, such as word pairs with opposite meanings (e.g., “intelligent” and “stupid”; “human” and “mechanical”). Such semantic symmetry is a key feature of semantic information. However, the representation of symmetric semantic information in the brain is not yet understood. For example, it remains unclear whether symmetric pairs of semantic information are represented in overlapping or distinct brain regions. We addressed this question in a data-driven manner by using the voxelwise modeling of movie-evoked cortical response measured by functional magnetic resonance imaging. In this modeling, response in each voxel was predicted from semantic labels designated for each movie scene. The semantic labels consisted of 30 different concepts, including 15 pairs of semantically symmetric concepts. Each concept was manually evaluated using a 5-point scale. By localizing the semantic representation associated with each concept based on the voxelwise accuracy of brain-response predictions, we found that semantic representations of symmetric concept pairs are broadly distributed but with little overlap in the cortex. Additionally, the weight of voxelwise models revealed highly complex, various patterns of cortical representations for each concept pair. These results suggest that symmetric semantic information has rather asymmetric and heterogeneous representations in the human brain.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100243"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695602500011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Specific pairs of semantic entities have symmetric relationships, such as word pairs with opposite meanings (e.g., “intelligent” and “stupid”; “human” and “mechanical”). Such semantic symmetry is a key feature of semantic information. However, the representation of symmetric semantic information in the brain is not yet understood. For example, it remains unclear whether symmetric pairs of semantic information are represented in overlapping or distinct brain regions. We addressed this question in a data-driven manner by using the voxelwise modeling of movie-evoked cortical response measured by functional magnetic resonance imaging. In this modeling, response in each voxel was predicted from semantic labels designated for each movie scene. The semantic labels consisted of 30 different concepts, including 15 pairs of semantically symmetric concepts. Each concept was manually evaluated using a 5-point scale. By localizing the semantic representation associated with each concept based on the voxelwise accuracy of brain-response predictions, we found that semantic representations of symmetric concept pairs are broadly distributed but with little overlap in the cortex. Additionally, the weight of voxelwise models revealed highly complex, various patterns of cortical representations for each concept pair. These results suggest that symmetric semantic information has rather asymmetric and heterogeneous representations in the human brain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Radiation-induced brain injury in non-human primates: A dual tracer PET study with [11C]MPC-6827 and [11C]PiB Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study Utilization of resting-state electroencephalography spectral power in convolutional neural networks for classification of primary progressive aphasia Brain topology and cognitive outcomes after cardiac arrest: A graph theoretical analysis of fMRI data The influence of post-processing methods and frequency bands on rs-fMRI: An example of electroacupuncture at Zusanli (ST36)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1