Ondřej Tichý , Nikolaos Evangeliou , Anna Selivanova , Václav Šmídl
{"title":"Inverse modeling of 137Cs during Chernobyl 2020 wildfires without the first guess","authors":"Ondřej Tichý , Nikolaos Evangeliou , Anna Selivanova , Václav Šmídl","doi":"10.1016/j.apr.2025.102419","DOIUrl":null,"url":null,"abstract":"<div><div>This study estimates 137Cs emissions from Chernobyl wildfires in April 2020 using inverse modeling. Emissions are resolved with daily resolution by particle sizes (0.4 <span><math><mi>μ</mi></math></span>m, 8 <span><math><mi>μ</mi></math></span>m, 16 <span><math><mi>μ</mi></math></span>m) and altitudes (up to 3 km). The inverse problem’s complexity requires regularization due to its ill-posed nature. One potential way to regularize the problem is the use of the so-called first guess, i.e. emission taken from expert knowledge or previous literature. However, inappropriately chosen first guess may lead to serious bias in results or its availability may be limited for rapid response. We rather follow a Bayesian approach where all model parameters are considered as variables to be estimated from available data. We aim to combine three key principles: modeling of sparsity and smoothness of the emission vector, modeling of bounded ratios between released particle size/altitude fractions, and bias correction of the atmospheric transport model. All these principles proved their significance separately, however, we combine them in one comprehensive method to estimate the 137Cs emissions from the Chernobyl wildfires. The total released activity was estimated to be 458 GBq with uncertainty estimated to be 69 GBq. Our estimates also suggest that most of the activity has been released below a one-kilometer altitude with the more dominant role towards the smallest particle fraction than was considered in other studies. Using our estimate, we calculate the time-integrated volumetric activities of 137Cs over the domain using the JRODOS system and our findings well agrees with previous results.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 4","pages":"Article 102419"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225000212","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study estimates 137Cs emissions from Chernobyl wildfires in April 2020 using inverse modeling. Emissions are resolved with daily resolution by particle sizes (0.4 m, 8 m, 16 m) and altitudes (up to 3 km). The inverse problem’s complexity requires regularization due to its ill-posed nature. One potential way to regularize the problem is the use of the so-called first guess, i.e. emission taken from expert knowledge or previous literature. However, inappropriately chosen first guess may lead to serious bias in results or its availability may be limited for rapid response. We rather follow a Bayesian approach where all model parameters are considered as variables to be estimated from available data. We aim to combine three key principles: modeling of sparsity and smoothness of the emission vector, modeling of bounded ratios between released particle size/altitude fractions, and bias correction of the atmospheric transport model. All these principles proved their significance separately, however, we combine them in one comprehensive method to estimate the 137Cs emissions from the Chernobyl wildfires. The total released activity was estimated to be 458 GBq with uncertainty estimated to be 69 GBq. Our estimates also suggest that most of the activity has been released below a one-kilometer altitude with the more dominant role towards the smallest particle fraction than was considered in other studies. Using our estimate, we calculate the time-integrated volumetric activities of 137Cs over the domain using the JRODOS system and our findings well agrees with previous results.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.