{"title":"Collaboratively enhanced and integrated detail-context information for low-light image enhancement","authors":"Yuzhen Niu, Xiaofeng Lin, Huangbiao Xu, Rui Xu, Yuzhong Chen","doi":"10.1016/j.patcog.2025.111424","DOIUrl":null,"url":null,"abstract":"<div><div>Low-light image enhancement (LLIE) is a challenging task, due to the multiple degradation problems involved, such as low brightness, color distortion, heavy noise, and detail degradation. Existing deep learning-based LLIE methods mainly use encoder–decoder networks or full-resolution networks, which excel at extracting context or detail information, respectively. Since detail and context information are both required for LLIE, existing methods cannot solve all the degradation problems. To solve the above problem, we propose an LLIE method based on collaboratively enhanced and integrated detail-context information (CoEIDC). Specifically, we propose a full-resolution network with two collaborative subnetworks, namely the detail extraction and enhancement subnetwork (DE<sup>2</sup>-Net) and context extraction and enhancement subnetwork (CE<sup>2</sup>-Net). CE<sup>2</sup>-Net extracts context information from the features of DE<sup>2</sup>-Net at different stages through large receptive field convolutions. Moreover, a collaborative attention module (CAM) and a detail-context integration module are proposed to enhance and integrate detail and context information. CAM is reused to enhance the detail features from multi-receptive fields and the context features from multiple stages. Extensive experimental results demonstrate that our method outperforms the state-of-the-art LLIE methods, and is applicable to other image enhancement tasks, such as underwater image enhancement.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"162 ","pages":"Article 111424"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325000846","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Low-light image enhancement (LLIE) is a challenging task, due to the multiple degradation problems involved, such as low brightness, color distortion, heavy noise, and detail degradation. Existing deep learning-based LLIE methods mainly use encoder–decoder networks or full-resolution networks, which excel at extracting context or detail information, respectively. Since detail and context information are both required for LLIE, existing methods cannot solve all the degradation problems. To solve the above problem, we propose an LLIE method based on collaboratively enhanced and integrated detail-context information (CoEIDC). Specifically, we propose a full-resolution network with two collaborative subnetworks, namely the detail extraction and enhancement subnetwork (DE2-Net) and context extraction and enhancement subnetwork (CE2-Net). CE2-Net extracts context information from the features of DE2-Net at different stages through large receptive field convolutions. Moreover, a collaborative attention module (CAM) and a detail-context integration module are proposed to enhance and integrate detail and context information. CAM is reused to enhance the detail features from multi-receptive fields and the context features from multiple stages. Extensive experimental results demonstrate that our method outperforms the state-of-the-art LLIE methods, and is applicable to other image enhancement tasks, such as underwater image enhancement.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.