Conjugate heat transfer characteristics of crushed coal rock mass under axial compression: Coupling numerical analysis based on CT reconstruction and FEM

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2025-02-11 DOI:10.1016/j.ijheatmasstransfer.2025.126788
Yanchi Liu , Baiquan Lin , Ting Liu , Zhiyong Hao
{"title":"Conjugate heat transfer characteristics of crushed coal rock mass under axial compression: Coupling numerical analysis based on CT reconstruction and FEM","authors":"Yanchi Liu ,&nbsp;Baiquan Lin ,&nbsp;Ting Liu ,&nbsp;Zhiyong Hao","doi":"10.1016/j.ijheatmasstransfer.2025.126788","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the heat transfer characteristics of crushed coal under axial compression in deep abandoned mines during geothermal extraction. By combining visualized experiments with CT image reconstruction, the study overcame the limitation in the simulation scale, increase the size of finite element model by tens of times. The transient conjugate heat transfer of multi-phase fluid flow process in real axial pressure crushed coal at macro scale is realized. The key findings are as follows: With regard to the thermal conductivity characteristics, the effective thermal conductivities of models filled with different fluids rise linearly with the increase in thermal conductivity of the matrix. As for conjugate heat transfer characteristics, dominant heat transfer paths significantly impact conjugate heat transfer during the non-steady-state phase. An increase in boundary velocity enhances heat extraction efficiency. However, when the boundary velocity increases to 0.001 m/s, the thermal breakthrough time decreases by 66.8 %. Additionally, an increase in the initial temperature difference enhances the heat extraction rate and thermal recovery rate. When gaseous CO₂ is used as the fluid, the temperature and conductive heat flux differences in the heat transfer model are mainly manifested as axial stratification. This research provides an important theoretical support for the development of digital core technology for heat transfer research.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"242 ","pages":"Article 126788"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025001292","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the heat transfer characteristics of crushed coal under axial compression in deep abandoned mines during geothermal extraction. By combining visualized experiments with CT image reconstruction, the study overcame the limitation in the simulation scale, increase the size of finite element model by tens of times. The transient conjugate heat transfer of multi-phase fluid flow process in real axial pressure crushed coal at macro scale is realized. The key findings are as follows: With regard to the thermal conductivity characteristics, the effective thermal conductivities of models filled with different fluids rise linearly with the increase in thermal conductivity of the matrix. As for conjugate heat transfer characteristics, dominant heat transfer paths significantly impact conjugate heat transfer during the non-steady-state phase. An increase in boundary velocity enhances heat extraction efficiency. However, when the boundary velocity increases to 0.001 m/s, the thermal breakthrough time decreases by 66.8 %. Additionally, an increase in the initial temperature difference enhances the heat extraction rate and thermal recovery rate. When gaseous CO₂ is used as the fluid, the temperature and conductive heat flux differences in the heat transfer model are mainly manifested as axial stratification. This research provides an important theoretical support for the development of digital core technology for heat transfer research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Investigation of thermal performance and thermal lensing effects in cryogenically cooled Fe: ZnSe lasers Influence of hydraulic flip on spray uniformity and dynamics in Gasoline Direct Injection nozzles Compressible turbulent convection at very high Rayleigh numbers Flow estimation near a heating surface in the saturated pool boiling of water via thermal image velocimetry Tunable thermal conductivity and anisotropy of two-dimensional fullerene networks controlled by covalent bonding connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1