Elastic metallic conductors enabling stretchable electronic circuits for on-skin motion recognition

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2025-01-01 DOI:10.1016/j.mattod.2024.12.002
Huaisen Tian , Xu Kou , Shipeng Wang, Shengkang Fu, Chengliang Tao, Yanfeng Hou, Yan Yang, Jiawei Liu, Jiangxin Wang
{"title":"Elastic metallic conductors enabling stretchable electronic circuits for on-skin motion recognition","authors":"Huaisen Tian ,&nbsp;Xu Kou ,&nbsp;Shipeng Wang,&nbsp;Shengkang Fu,&nbsp;Chengliang Tao,&nbsp;Yanfeng Hou,&nbsp;Yan Yang,&nbsp;Jiawei Liu,&nbsp;Jiangxin Wang","doi":"10.1016/j.mattod.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Soft sensing applications typically incorporate stretchable sensors tied to rigid processing circuits, leading to challenges including compromised conformability and large noise induced during coupling with external circuits. Here, we developed an innovative strategy to synthesize high-performance elastic metallic conductors, which serve to enable stretchable multilayer printable circuit boards (SMPCBs). The SMPCBs can seamlessly incorporates soft sensors, electronic components, and processing circuits, facilitating the applications of stretchable integrated electronic systems, including a soft RFID temperature sensing device, a soft wireless-powered pressure sensing circuit, and an on-skin motion-recognition device in this study. Furthermore, we developed a Dual-Tower Transformer Network model to accurately identify hand motions in 3D free space, which can recognize over 30 distinct motions with an accuracy exceeding 90%.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"82 ","pages":"Pages 99-108"},"PeriodicalIF":22.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002797","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft sensing applications typically incorporate stretchable sensors tied to rigid processing circuits, leading to challenges including compromised conformability and large noise induced during coupling with external circuits. Here, we developed an innovative strategy to synthesize high-performance elastic metallic conductors, which serve to enable stretchable multilayer printable circuit boards (SMPCBs). The SMPCBs can seamlessly incorporates soft sensors, electronic components, and processing circuits, facilitating the applications of stretchable integrated electronic systems, including a soft RFID temperature sensing device, a soft wireless-powered pressure sensing circuit, and an on-skin motion-recognition device in this study. Furthermore, we developed a Dual-Tower Transformer Network model to accurately identify hand motions in 3D free space, which can recognize over 30 distinct motions with an accuracy exceeding 90%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性金属导体,可拉伸电子电路,用于皮肤上的运动识别
软测量应用通常将可拉伸传感器与刚性处理电路结合在一起,这带来了一些挑战,包括在与外部电路耦合时降低一致性和产生大噪声。在这里,我们开发了一种创新的策略来合成高性能弹性金属导体,这有助于实现可拉伸的多层印刷电路板(smpcb)。smpcb可以无缝集成软传感器、电子元件和处理电路,促进可拉伸集成电子系统的应用,包括软RFID温度传感设备、软无线供电压力传感电路和皮肤上的运动识别设备。此外,我们开发了一个双塔变压器网络模型来准确识别三维自由空间中的手部运动,该模型可以识别30多种不同的运动,准确率超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Experimental and computational advancement of cathode materials for futuristic sodium ion batteries Aminophosphonate-Derived lipid nanoparticles enable circular RNA delivery for functional recovery after spinal cord injury Microhole array metasurface-enhanced InAs/GaSb superlattice LWIR detectors with boosted photoresponse via guided-mode resonance coupling Concrete: From infrastructure to structural energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1