Rong Huang , Chao Zhou , Tianxiang Wang , Yuanli Chen , Zhouling Xie , Lingling Wei , Yajun Duan , Chenzhong Liao , Chuanrui Ma , Xiaoxiao Yang
{"title":"Lycopene inhibits doxorubicin-induced heart failure by inhibiting ferroptosis through the Nrf2 signaling pathway","authors":"Rong Huang , Chao Zhou , Tianxiang Wang , Yuanli Chen , Zhouling Xie , Lingling Wei , Yajun Duan , Chenzhong Liao , Chuanrui Ma , Xiaoxiao Yang","doi":"10.1016/j.lfs.2025.123452","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Lycopene (LYC) is a dietary nutrient that plays a protective role in various cardiovascular diseases. Doxorubicin (DOX)-induced cardiotoxicity is an important cause of poor prognosis in many cancer patients treated with anthracyclines. This study aims to investigate the protective effects of LYC against DOX-induced heart failure (HF) and specific underlying mechanisms.</div></div><div><h3>Materials and methods</h3><div>DOX was used to establish HF model in cardiomyocytes and C57BL/6J mice to assess the protection of LYC against DOX-induced HF on inflammation, oxidative stress, and ferroptosis.</div></div><div><h3>Key findings</h3><div>LYC ameliorated DOX-induced deterioration of cardiac function. Mechanistically, LYC reduced collagen content and fibrosis by inhibiting the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Additionally, LYC inhibited reactive oxygen species (ROS) production by upregulating antioxidant enzymes expression. LYC enhanced B-cell lymphoma 2 (Bcl-2), but reduced apoptosis positive cells by reducing tumor protein 53 (p53), Bcl-2 associated X protein (Bax), and cleaved-Caspase 3 (c-Casp3) levels. Besides, LYC reduced inflammatory cytokine levels through activating peroxisome proliferator activated receptor gamma (PPARγ). Moreover, LYC ameliorated DOX-induced ferroptosis both <em>in vivo</em> and <em>in vitro</em>. Furthermore, we showed that LYC inhibited DOX-induced ferroptosis via binding to nuclear factor-erythroid 2-related factor 2 (Nrf2) to enhance its expression.</div></div><div><h3>Significance</h3><div>LYC improved DOX-induced cardiac dysfunction by reducing oxidative stress and inflammation, which was contributed by the reduction of ferroptosis. At molecular levels, LYC ameliorated DOX-induced ferroptosis through activating the Nrf2 signaling pathway. These findings indicate the potential of LYC as a therapeutic option for HF treatment.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"365 ","pages":"Article 123452"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525000852","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Lycopene (LYC) is a dietary nutrient that plays a protective role in various cardiovascular diseases. Doxorubicin (DOX)-induced cardiotoxicity is an important cause of poor prognosis in many cancer patients treated with anthracyclines. This study aims to investigate the protective effects of LYC against DOX-induced heart failure (HF) and specific underlying mechanisms.
Materials and methods
DOX was used to establish HF model in cardiomyocytes and C57BL/6J mice to assess the protection of LYC against DOX-induced HF on inflammation, oxidative stress, and ferroptosis.
Key findings
LYC ameliorated DOX-induced deterioration of cardiac function. Mechanistically, LYC reduced collagen content and fibrosis by inhibiting the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Additionally, LYC inhibited reactive oxygen species (ROS) production by upregulating antioxidant enzymes expression. LYC enhanced B-cell lymphoma 2 (Bcl-2), but reduced apoptosis positive cells by reducing tumor protein 53 (p53), Bcl-2 associated X protein (Bax), and cleaved-Caspase 3 (c-Casp3) levels. Besides, LYC reduced inflammatory cytokine levels through activating peroxisome proliferator activated receptor gamma (PPARγ). Moreover, LYC ameliorated DOX-induced ferroptosis both in vivo and in vitro. Furthermore, we showed that LYC inhibited DOX-induced ferroptosis via binding to nuclear factor-erythroid 2-related factor 2 (Nrf2) to enhance its expression.
Significance
LYC improved DOX-induced cardiac dysfunction by reducing oxidative stress and inflammation, which was contributed by the reduction of ferroptosis. At molecular levels, LYC ameliorated DOX-induced ferroptosis through activating the Nrf2 signaling pathway. These findings indicate the potential of LYC as a therapeutic option for HF treatment.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.