Effects of multi-sized glass fiber-reinforced polymer waste on hydration and mechanical properties of cement-based materials

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of building engineering Pub Date : 2025-02-08 DOI:10.1016/j.jobe.2025.112070
Zhizong Tian , Qianqian Wang , Shuguang Hou , Xiaodong Shen
{"title":"Effects of multi-sized glass fiber-reinforced polymer waste on hydration and mechanical properties of cement-based materials","authors":"Zhizong Tian ,&nbsp;Qianqian Wang ,&nbsp;Shuguang Hou ,&nbsp;Xiaodong Shen","doi":"10.1016/j.jobe.2025.112070","DOIUrl":null,"url":null,"abstract":"<div><div>Utilization of recycled glass fiber reinforced polymers (GFRP) is challenging due to their non-degradability and complex composition. This work explored an application route to produce supplementary cementitious material (SCM) and fine aggregate (FA) with mechanical processed GFRP wastes. A novel GFRP-Sand composite fine aggregate (GSCA) was developed with a combination progress of multi-particle size, continuous gradation design and equal volume substitution method. The effects of GFRP waste on the hydration reaction, workability, mechanical properties and micro-structure of cement-based materials were systematically studied. Results showed that GFRP powders can be used as inert fillers with their reactivity index below 60 %. Replacement of 10 wt% GFRP powder did not change the grade of cement. With the replacement of 10∼30 vol% F1 in GSCA, the early compressive strength and flexural strength of mortars increased by 2–7% and 7–16 %, respectively, while the later strength grade of mortars was maintained. The resin component in GFRP SCMs reacted with cement and formed a gel film and the calcite filler reacted with generation of Mc, which improved the binding strength between aggregate and paste. Tiny glass fiber on the surface of GFRP aggregates increased the binding strength of interfacial transition zone (ITZ) in 3 days, while the consumption of calcite induced the separation of glass fiber from GFRP FAs with hydrated time passed. This work could be the basis for understanding the reaction mechanism of GFRP waste in cement-based materials from macro-to micro-scale and addressing an efficient way for its large-scale usage with low cost.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"102 ","pages":"Article 112070"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225003067","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilization of recycled glass fiber reinforced polymers (GFRP) is challenging due to their non-degradability and complex composition. This work explored an application route to produce supplementary cementitious material (SCM) and fine aggregate (FA) with mechanical processed GFRP wastes. A novel GFRP-Sand composite fine aggregate (GSCA) was developed with a combination progress of multi-particle size, continuous gradation design and equal volume substitution method. The effects of GFRP waste on the hydration reaction, workability, mechanical properties and micro-structure of cement-based materials were systematically studied. Results showed that GFRP powders can be used as inert fillers with their reactivity index below 60 %. Replacement of 10 wt% GFRP powder did not change the grade of cement. With the replacement of 10∼30 vol% F1 in GSCA, the early compressive strength and flexural strength of mortars increased by 2–7% and 7–16 %, respectively, while the later strength grade of mortars was maintained. The resin component in GFRP SCMs reacted with cement and formed a gel film and the calcite filler reacted with generation of Mc, which improved the binding strength between aggregate and paste. Tiny glass fiber on the surface of GFRP aggregates increased the binding strength of interfacial transition zone (ITZ) in 3 days, while the consumption of calcite induced the separation of glass fiber from GFRP FAs with hydrated time passed. This work could be the basis for understanding the reaction mechanism of GFRP waste in cement-based materials from macro-to micro-scale and addressing an efficient way for its large-scale usage with low cost.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
期刊最新文献
Study of seismic performance of reinforced concrete rocking columns Improved mechanical and thermal properties of sustainable ultra-high performance geopolymer concrete with cellulose nanofibres Effects of multi-sized glass fiber-reinforced polymer waste on hydration and mechanical properties of cement-based materials Mechanical and environmental properties of limestone calcined coal gangue based cementitious materials Multi-step fusion model for predicting indoor temperature in residential buildings based on attention mechanism and neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1