Yuan Zhou, JoonOh Seo, Yue Gong, Kelvin HoLam Heung, Masood Khan, Ting Lei
{"title":"Biomechanical assessment of a passive back exoskeleton using vision-based motion capture and virtual modeling","authors":"Yuan Zhou, JoonOh Seo, Yue Gong, Kelvin HoLam Heung, Masood Khan, Ting Lei","doi":"10.1016/j.autcon.2025.106035","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a video-driven biomechanical analysis method for measuring muscular loads influenced by wearing an exoskeleton suit, combining vision-based motion capture and virtual modeling approaches. Motion data obtained from site videos is integrated with a newly developed human-exoskeleton model in biomechanical software, to simulate muscular loads on the human body and evaluate exoskeleton suits. This method has been validated through experimental tests, where simulated and directly measured muscle activations were compared for four types of lifting tasks. The results indicate that this method successfully estimates neuromuscular activations of the low back muscles with and without wearing an exoskeleton suit, though the effect of the exoskeleton suit tends to be overestimated in simulations. Despite this limitation, the proposed method is expected to assist in efficiently evaluating exoskeleton use in practice, thereby facilitating the more widespread adoption of passive exoskeletons in construction.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"172 ","pages":"Article 106035"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525000755","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a video-driven biomechanical analysis method for measuring muscular loads influenced by wearing an exoskeleton suit, combining vision-based motion capture and virtual modeling approaches. Motion data obtained from site videos is integrated with a newly developed human-exoskeleton model in biomechanical software, to simulate muscular loads on the human body and evaluate exoskeleton suits. This method has been validated through experimental tests, where simulated and directly measured muscle activations were compared for four types of lifting tasks. The results indicate that this method successfully estimates neuromuscular activations of the low back muscles with and without wearing an exoskeleton suit, though the effect of the exoskeleton suit tends to be overestimated in simulations. Despite this limitation, the proposed method is expected to assist in efficiently evaluating exoskeleton use in practice, thereby facilitating the more widespread adoption of passive exoskeletons in construction.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.