Zhidong Xie , Tao Peng , Wei You , Guojun Wang , Qin Liu , Entao Luo
{"title":"P2-TaskMP: Privacy-Preserving Task Allocation Optimization Based on Mobility Prediction","authors":"Zhidong Xie , Tao Peng , Wei You , Guojun Wang , Qin Liu , Entao Luo","doi":"10.1016/j.future.2025.107720","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of Mobile Crowd Sensing (MCS) has provided a new paradigm for data sensing. An effective task allocation can ensure the stability and efficiency of the system in MCS. In this paper, we propose a privacy-preserving multi-objective, multi-task allocation optimization scheme, P2-TaskMP (Privacy-Preserving Task Allocation Optimization based on Mobility Prediction), to solve the multi-objective optimization task assignment problem while preserving users’ privacy. The scheme evaluates participants’ task completion capabilities by introducing mobility prediction based on fuzzy logic, which then informs task pre-allocation to form the initial population, unlike traditional methods that initialize populations randomly. To address potential privacy leaks of participants’ spatiotemporal information during mobility prediction, we employ differential privacy techniques to add Laplace noise to participants’ historical trajectory records, achieving adequate privacy protection. P2-TaskMP achieves Pareto-optimal solutions using the NSGA-II-DE (Non-dominated Sorting Genetic Algorithm II with Differential Evolution) algorithm and realizes satisfactory results with fast solution speed for large-scale task allocation problems. Simulations conducted on two real-world datasets demonstrate that our proposed method achieves higher accuracy, and the task allocation algorithm performs better than the compared algorithms in maximizing task completion rate and minimizing cost.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107720"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000159","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of Mobile Crowd Sensing (MCS) has provided a new paradigm for data sensing. An effective task allocation can ensure the stability and efficiency of the system in MCS. In this paper, we propose a privacy-preserving multi-objective, multi-task allocation optimization scheme, P2-TaskMP (Privacy-Preserving Task Allocation Optimization based on Mobility Prediction), to solve the multi-objective optimization task assignment problem while preserving users’ privacy. The scheme evaluates participants’ task completion capabilities by introducing mobility prediction based on fuzzy logic, which then informs task pre-allocation to form the initial population, unlike traditional methods that initialize populations randomly. To address potential privacy leaks of participants’ spatiotemporal information during mobility prediction, we employ differential privacy techniques to add Laplace noise to participants’ historical trajectory records, achieving adequate privacy protection. P2-TaskMP achieves Pareto-optimal solutions using the NSGA-II-DE (Non-dominated Sorting Genetic Algorithm II with Differential Evolution) algorithm and realizes satisfactory results with fast solution speed for large-scale task allocation problems. Simulations conducted on two real-world datasets demonstrate that our proposed method achieves higher accuracy, and the task allocation algorithm performs better than the compared algorithms in maximizing task completion rate and minimizing cost.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.