Hussein Thary Khamees , Sameer Algburi , Hussein E. Kotb
{"title":"Computation of the scintillation index and BER of super Lorentz Gaussian laser beam in a slant propagation at atmospheric turbulence","authors":"Hussein Thary Khamees , Sameer Algburi , Hussein E. Kotb","doi":"10.1016/j.asej.2025.103295","DOIUrl":null,"url":null,"abstract":"<div><div>Modern free-space communication systems require a comprehensive analysis of how atmospheric turbulence impacts the scintillation index and the bit-error rate (BER). In this paper, we model the laser light with Super Lorentz Gaussian Beams (SLGBs) intensity distribution slant propagation between the transmitter and receiver planes. The Huygens-Fresnel Method is employed to compute the received field due to its effectiveness in accurately modeling atmospheric turbulence. A 50° zenith angle results in the lowest on-axis scintillation index. The receiver plane aperture area size plays a crucial role in this analysis. For an aperture area that covers 25 % of the receiver plane, the SLGB<sub>00</sub> almost exhibits the lowest scintillation index. The SLGB<sub>22</sub> scintillation index approaches SLGB<sub>00</sub> at a laser wavelength of 1.55 µm. We reduced the receiver aperture area to 1.4 × 10<sup>−3</sup>% and computed the on-axis scintillation index and the BER for both SLGB<sub>00</sub> and SLGB<sub>22</sub>. SLGB<sub>22</sub> shows the lowest on-axis scintillation index and BER.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103295"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern free-space communication systems require a comprehensive analysis of how atmospheric turbulence impacts the scintillation index and the bit-error rate (BER). In this paper, we model the laser light with Super Lorentz Gaussian Beams (SLGBs) intensity distribution slant propagation between the transmitter and receiver planes. The Huygens-Fresnel Method is employed to compute the received field due to its effectiveness in accurately modeling atmospheric turbulence. A 50° zenith angle results in the lowest on-axis scintillation index. The receiver plane aperture area size plays a crucial role in this analysis. For an aperture area that covers 25 % of the receiver plane, the SLGB00 almost exhibits the lowest scintillation index. The SLGB22 scintillation index approaches SLGB00 at a laser wavelength of 1.55 µm. We reduced the receiver aperture area to 1.4 × 10−3% and computed the on-axis scintillation index and the BER for both SLGB00 and SLGB22. SLGB22 shows the lowest on-axis scintillation index and BER.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.