Advancing patent law with generative AI: Human-in-the-loop systems for AI-assisted drafting, prior art search, and multimodal IP protection

IF 2.2 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE World Patent Information Pub Date : 2025-02-11 DOI:10.1016/j.wpi.2025.102341
Luong Vu Bui
{"title":"Advancing patent law with generative AI: Human-in-the-loop systems for AI-assisted drafting, prior art search, and multimodal IP protection","authors":"Luong Vu Bui","doi":"10.1016/j.wpi.2025.102341","DOIUrl":null,"url":null,"abstract":"<div><div>Generative AI and Large Language Models (LLMs) are transforming patent law by automating complex tasks that traditionally demand significant legal and technical expertise. This paper examines AI-assisted systems designed to enhance patent drafting, prior art searches, and multimodal intellectual property (IP) protection. Human-in-the-Loop (HITL) frameworks play a crucial role in ensuring that AI-generated outputs remain accurate, legally compliant, and ethically sound, augmenting human expertise rather than replacing it.</div><div>We evaluate the applicability of LLMs such as GPT-4, Claude, and Gemini for patent-related tasks, highlighting their advantages and limitations. The study also explores critical challenges, including GDPR compliance, issues of interpretability, and the impact of outdated training data. Furthermore, strategies to mitigate AI-generated “hallucinations” and optimize prompt engineering for patent-specific applications are discussed. A comparative analysis of industry-leading platforms like Google Patents, PatSnap, and LexisNexis illustrates how AI tools are being integrated into patent workflows.</div><div>The paper provides both theoretical insights and practical recommendations for integrating AI into legal systems. By addressing the technical and ethical implications of AI-generated inventions, the study underscores the importance of transparency, accountability, and robust human oversight. This research aims to guide the seamless integration of AI technologies into patent law, promoting efficiency, accuracy, and compliance in an increasingly complex innovation landscape.</div></div>","PeriodicalId":51794,"journal":{"name":"World Patent Information","volume":"80 ","pages":"Article 102341"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Patent Information","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0172219025000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generative AI and Large Language Models (LLMs) are transforming patent law by automating complex tasks that traditionally demand significant legal and technical expertise. This paper examines AI-assisted systems designed to enhance patent drafting, prior art searches, and multimodal intellectual property (IP) protection. Human-in-the-Loop (HITL) frameworks play a crucial role in ensuring that AI-generated outputs remain accurate, legally compliant, and ethically sound, augmenting human expertise rather than replacing it.
We evaluate the applicability of LLMs such as GPT-4, Claude, and Gemini for patent-related tasks, highlighting their advantages and limitations. The study also explores critical challenges, including GDPR compliance, issues of interpretability, and the impact of outdated training data. Furthermore, strategies to mitigate AI-generated “hallucinations” and optimize prompt engineering for patent-specific applications are discussed. A comparative analysis of industry-leading platforms like Google Patents, PatSnap, and LexisNexis illustrates how AI tools are being integrated into patent workflows.
The paper provides both theoretical insights and practical recommendations for integrating AI into legal systems. By addressing the technical and ethical implications of AI-generated inventions, the study underscores the importance of transparency, accountability, and robust human oversight. This research aims to guide the seamless integration of AI technologies into patent law, promoting efficiency, accuracy, and compliance in an increasingly complex innovation landscape.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
World Patent Information
World Patent Information INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
3.50
自引率
18.50%
发文量
40
期刊介绍: The aim of World Patent Information is to provide a worldwide forum for the exchange of information between people working professionally in the field of Industrial Property information and documentation and to promote the widest possible use of the associated literature. Regular features include: papers concerned with all aspects of Industrial Property information and documentation; new regulations pertinent to Industrial Property information and documentation; short reports on relevant meetings and conferences; bibliographies, together with book and literature reviews.
期刊最新文献
Editorial Board Patent litigation mining using a large language model—Taking unmanned aerial vehicle development as the case domain Multi-stage fine-tuning of patent domain-specific DeBERTa for advanced patent landscape on SDGs/Decarbonization Advancing patent law with generative AI: Human-in-the-loop systems for AI-assisted drafting, prior art search, and multimodal IP protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1