On-chip integrated plasmon-induced high-performance self-powered Pt/GaN ultraviolet photodetector

Chip Pub Date : 2024-12-04 DOI:10.1016/j.chip.2024.100118
Tong Xu , Shulin Sha , Kai Tang , Xuefeng Fan , Jinguo Liu , Caixia Kan , Gangyi Zhu , Feifei Qin , Daning Shi , Mingming Jiang
{"title":"On-chip integrated plasmon-induced high-performance self-powered Pt/GaN ultraviolet photodetector","authors":"Tong Xu ,&nbsp;Shulin Sha ,&nbsp;Kai Tang ,&nbsp;Xuefeng Fan ,&nbsp;Jinguo Liu ,&nbsp;Caixia Kan ,&nbsp;Gangyi Zhu ,&nbsp;Feifei Qin ,&nbsp;Daning Shi ,&nbsp;Mingming Jiang","doi":"10.1016/j.chip.2024.100118","DOIUrl":null,"url":null,"abstract":"<div><div>The advantages of on-chip integrated photodetectors, such as miniaturization, high integration, and reliability, make them an indispensable and important part of electronic devices and systems. Herein, we experimentally exhibited a monolithically integrated ultraviolet photodetector utilizing GaN microcylinder epitaxial structure on Si wafer, with its photoresponse properties plasmonically boosted using Pt nanoparticles via specific sizes. When illuminated upon ultraviolet light at 0 V bias, the Pt/GaN device exhibits significant photovoltaic performances, including a peak responsivity of 200.1 mA W<sup>−1</sup>, external quantum efficiency of 65%, and other figures-of-merit. Finite element analysis and energy band theory confirm that the excellent photodetection properties of the Pt/GaN device are related to the strong plasmon absorption and the increase of hot electrons injected into the GaN conduction band, which considerably improves its photoresponse performance and robustness in application. To realize the multipurpose capability of the devices, we validated the application of Pt/GaN as turbidity sensing and achieved a resolution of up to 100 NTU. Moreover, the prepared devices can be used as optical data receivers for optical communication. These findings provide references for on-chip detectors to improve the overall system performance and promote the realization of more complex applications.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advantages of on-chip integrated photodetectors, such as miniaturization, high integration, and reliability, make them an indispensable and important part of electronic devices and systems. Herein, we experimentally exhibited a monolithically integrated ultraviolet photodetector utilizing GaN microcylinder epitaxial structure on Si wafer, with its photoresponse properties plasmonically boosted using Pt nanoparticles via specific sizes. When illuminated upon ultraviolet light at 0 V bias, the Pt/GaN device exhibits significant photovoltaic performances, including a peak responsivity of 200.1 mA W−1, external quantum efficiency of 65%, and other figures-of-merit. Finite element analysis and energy band theory confirm that the excellent photodetection properties of the Pt/GaN device are related to the strong plasmon absorption and the increase of hot electrons injected into the GaN conduction band, which considerably improves its photoresponse performance and robustness in application. To realize the multipurpose capability of the devices, we validated the application of Pt/GaN as turbidity sensing and achieved a resolution of up to 100 NTU. Moreover, the prepared devices can be used as optical data receivers for optical communication. These findings provide references for on-chip detectors to improve the overall system performance and promote the realization of more complex applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
On-chip integrated plasmon-induced high-performance self-powered Pt/GaN ultraviolet photodetector On-chip warped three-dimensional InGaN/GaN quantum well diode with transceiver coexistence characters Chip-scale metaphotonic singularities: topological, dynamical, and practical aspects A versatile optoelectronic device for ultrasensitive negative-positive pressure sensing applications Silicon photonic integrated wideband radio frequency self-interference cancellation chip for over-the-air in-band full-duplex communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1