Performance evaluation method for different clustering techniques

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2025-02-11 DOI:10.1016/j.compeleceng.2025.110132
John Enriquez-Loja, Bryan Castillo-Pérez, Xavier Serrano-Guerrero, Antonio Barragán-Escandón
{"title":"Performance evaluation method for different clustering techniques","authors":"John Enriquez-Loja,&nbsp;Bryan Castillo-Pérez,&nbsp;Xavier Serrano-Guerrero,&nbsp;Antonio Barragán-Escandón","doi":"10.1016/j.compeleceng.2025.110132","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive methodology to objectively evaluate various clustering techniques applied to electrical demand profiles (EDPs). The effectiveness of Self-Organizing Maps (SOM), Fuzzy C-Means (FCM), and Hierarchical Clustering (HC) is analyzed, revealing that these methods achieve anomalous value percentages below 17.1%. The proposed approach includes a statistical framework based on confidence intervals to classify data as typical or atypical, thereby facilitating the selection of the most appropriate clustering technique based on the characteristics of the dataset. To evaluate the methodology, an analysis of probability distributions is used, comparing it with three internal validation techniques through the implementation of specific criteria. These metrics provide insight into the dispersion and distribution of the EDPs, allowing for a robust evaluation of how variations in data impact clustering outcomes. The results indicate that the SOM, FCM and HC techniques exhibit strong adaptability to different patterns of variability, making them suitable for diverse applications in energy management. This research contributes valuable tools for optimizing the classification of EDPs, enhancing the understanding of consumption behaviors in the electricity sector.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110132"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625000758","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive methodology to objectively evaluate various clustering techniques applied to electrical demand profiles (EDPs). The effectiveness of Self-Organizing Maps (SOM), Fuzzy C-Means (FCM), and Hierarchical Clustering (HC) is analyzed, revealing that these methods achieve anomalous value percentages below 17.1%. The proposed approach includes a statistical framework based on confidence intervals to classify data as typical or atypical, thereby facilitating the selection of the most appropriate clustering technique based on the characteristics of the dataset. To evaluate the methodology, an analysis of probability distributions is used, comparing it with three internal validation techniques through the implementation of specific criteria. These metrics provide insight into the dispersion and distribution of the EDPs, allowing for a robust evaluation of how variations in data impact clustering outcomes. The results indicate that the SOM, FCM and HC techniques exhibit strong adaptability to different patterns of variability, making them suitable for diverse applications in energy management. This research contributes valuable tools for optimizing the classification of EDPs, enhancing the understanding of consumption behaviors in the electricity sector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Multi-focus image fusion with visual state space model and dual adversarial learning Design and Raspberry Pi-based implementation of an intelligent energy management system for a hybrid AC/DC microgrid with renewable energy, battery, ultracapacitor and hydrogen system An encrypted and signed plaintext symmetric cryptosystem Document-level relation extraction with Double graph guidance for long-tailed distributions Distributed energy procurement with renewable energy sources in a radial distribution system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1