Analytical and ANN-based approaches for free vibration and nonlinear transient analysis of FG-GOEAM toroidal shell segments

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2025-02-11 DOI:10.1016/j.compstruc.2025.107676
Vu Ngoc Viet Hoang , Pham Trung Thanh
{"title":"Analytical and ANN-based approaches for free vibration and nonlinear transient analysis of FG-GOEAM toroidal shell segments","authors":"Vu Ngoc Viet Hoang ,&nbsp;Pham Trung Thanh","doi":"10.1016/j.compstruc.2025.107676","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study investigates the free vibration and nonlinear transient response of functionally graded graphene origami (GOri)-enabled auxetic metamaterials (GOEAMs) toroidal shell segments under thermal conditions. The impact of the Winkler-Pasternak foundation, distributed in two configurations: centered and at both ends of the shell, is thoroughly examined.</div></div><div><h3>Methods</h3><div>The material properties with GOri distributions through the shell thickness are scrutinized using genetic programming-assisted micromechanical models. Nonlinear kinematic relationships are derived via Reddy's third-order shear deformation theory and von Kármán's geometric assumptions. The equations of motion are solved using Galerkin method. An Artificial Neural Network (ANN), trained with Bayesian regularization backpropagation algorithm, is developed to predict natural frequencies, using comprehensive training data validated against analytical results.</div></div><div><h3>Results</h3><div>The ANN achieves a target mean squared error (MSE) of <span><math><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></math></span>, with error histograms showing minimal and evenly distributed errors. Regression plots confirm perfect correlations (R = 1) between predicted and actual values, indicating robust predictive accuracy. Additionally, increased GOri folding amplifies the negative Poisson's ratio, reduces Young's modulus in GOri/Cu composites, and consequently decreases shell stiffness, lowers natural frequencies, and increases vibration amplitudes. A center-concentrated foundation distribution yields higher natural frequencies and reduced vibration amplitudes compared to end-distributed configurations.</div></div><div><h3>Conclusions</h3><div>The proposed approaches demonstrate high accuracy and generalization capability in predicting the dynamic responses of FG-GOEAM shells under thermal effects. The findings emphasize the critical role of GOri folding patterns and foundation distributions in tuning vibration characteristics, offering valuable insights for the design and optimization of advanced metamaterial structures.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"309 ","pages":"Article 107676"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925000343","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

This study investigates the free vibration and nonlinear transient response of functionally graded graphene origami (GOri)-enabled auxetic metamaterials (GOEAMs) toroidal shell segments under thermal conditions. The impact of the Winkler-Pasternak foundation, distributed in two configurations: centered and at both ends of the shell, is thoroughly examined.

Methods

The material properties with GOri distributions through the shell thickness are scrutinized using genetic programming-assisted micromechanical models. Nonlinear kinematic relationships are derived via Reddy's third-order shear deformation theory and von Kármán's geometric assumptions. The equations of motion are solved using Galerkin method. An Artificial Neural Network (ANN), trained with Bayesian regularization backpropagation algorithm, is developed to predict natural frequencies, using comprehensive training data validated against analytical results.

Results

The ANN achieves a target mean squared error (MSE) of 1×107, with error histograms showing minimal and evenly distributed errors. Regression plots confirm perfect correlations (R = 1) between predicted and actual values, indicating robust predictive accuracy. Additionally, increased GOri folding amplifies the negative Poisson's ratio, reduces Young's modulus in GOri/Cu composites, and consequently decreases shell stiffness, lowers natural frequencies, and increases vibration amplitudes. A center-concentrated foundation distribution yields higher natural frequencies and reduced vibration amplitudes compared to end-distributed configurations.

Conclusions

The proposed approaches demonstrate high accuracy and generalization capability in predicting the dynamic responses of FG-GOEAM shells under thermal effects. The findings emphasize the critical role of GOri folding patterns and foundation distributions in tuning vibration characteristics, offering valuable insights for the design and optimization of advanced metamaterial structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
A deep learning-based method for full-bridge flutter analysis considering aerodynamic and geometric nonlinearities A CFD-FEM-IBM simulation scheme for the strong coupling between the fluid and the structure with large deformations and movements An indirect harmonic balance method based on frequency response functions simplification for periodical response analysis of local nonlinearity systems Explicit phase field generalized interpolation material point method for dynamic fracture problems An optimised multi-level method for the pushover analysis of historic masonry structures accounting for the actual masonry pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1