Qing Yu , Yali Wang , Kaixuan Wang , Wenjie Tian , Xiaobin Wen , Yi Ding , Yeguang Li , Zhongjie Wang
{"title":"Acclimation strategy and nitrate supplementation significantly enhanced the ammonium tolerance of Arthrospira platensis HN5","authors":"Qing Yu , Yali Wang , Kaixuan Wang , Wenjie Tian , Xiaobin Wen , Yi Ding , Yeguang Li , Zhongjie Wang","doi":"10.1016/j.eti.2025.104076","DOIUrl":null,"url":null,"abstract":"<div><div>The highly toxic effects of ammonium on <em>Arthrospira</em> hinder its utilization as a nitrogen source in <em>Arthrospira</em> cultivation and severely limit its application in treating high-ammonium wastewater. This study revealed that both short-term (12 d) and long-term (270 d) ammonium acclimation significantly improved the ammonium tolerance of <em>Arthrospira platensis</em> HN5, with biomass productivities of 0.14 and 0.11 g L<sup>–1</sup> d<sup>–1</sup>, respectively, and net photosynthetic oxygen evolution rates exceeding 60 and 50 μmol O<sub>2</sub>·mg<sup>–1</sup>·Chla·h<sup>–1</sup> under a lethal ammonium concentration of 15 mM. Furthermore, the ammonium tolerance of the long-term acclimated strain exhibited heritable characteristics. Additionally, nitrate (NaNO<sub>3</sub>) concentrations of ≥ 0.1 mM were demonstrated to effectively enhance the ammonium tolerance of <em>A. platensis</em> HN5 in a concentration-independent manner. This study highlighted the role of acclimation and nitrate supplementation in improving the ammonium tolerance of <em>A. platensis</em> HN5, offering efficient and reliable strategies for ammonium utilization in the <em>Arthrospira</em> industry and for treating high-ammonium wastewater using <em>Arthrospira</em>.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104076"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425000628","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The highly toxic effects of ammonium on Arthrospira hinder its utilization as a nitrogen source in Arthrospira cultivation and severely limit its application in treating high-ammonium wastewater. This study revealed that both short-term (12 d) and long-term (270 d) ammonium acclimation significantly improved the ammonium tolerance of Arthrospira platensis HN5, with biomass productivities of 0.14 and 0.11 g L–1 d–1, respectively, and net photosynthetic oxygen evolution rates exceeding 60 and 50 μmol O2·mg–1·Chla·h–1 under a lethal ammonium concentration of 15 mM. Furthermore, the ammonium tolerance of the long-term acclimated strain exhibited heritable characteristics. Additionally, nitrate (NaNO3) concentrations of ≥ 0.1 mM were demonstrated to effectively enhance the ammonium tolerance of A. platensis HN5 in a concentration-independent manner. This study highlighted the role of acclimation and nitrate supplementation in improving the ammonium tolerance of A. platensis HN5, offering efficient and reliable strategies for ammonium utilization in the Arthrospira industry and for treating high-ammonium wastewater using Arthrospira.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.