Advancements and future outlook of Artificial Intelligence in energy and climate change modeling

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2025-01-28 DOI:10.1016/j.adapen.2025.100211
Mobolaji Shobanke, Mehul Bhatt, Ekundayo Shittu
{"title":"Advancements and future outlook of Artificial Intelligence in energy and climate change modeling","authors":"Mobolaji Shobanke,&nbsp;Mehul Bhatt,&nbsp;Ekundayo Shittu","doi":"10.1016/j.adapen.2025.100211","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the employment of artificial intelligence and machine learning to decipher strategic responses to incidences of climate change and to inform the management of energy systems. Given the increasing global dependence on sustainable and efficient energy solutions and the rise of artificial intelligence and machine learning, it has become imperative to evaluate existing routines in energy and climate change modeling to identify areas for further application. The process of conducting a systematic review of the contemporary literature highlights significant advances in optimization and predictive analytics within energy and climate change modeling systems driven by artificial intelligence and machine learning. This paper contributes to cutting-edge research on energy innovation, <em>i.e.</em>, through the examination of the applications of artificial intelligence and machine learning in energy modeling and climate change assessments. The article bridges the gaps between research, development, and implementation with significant insights into the broader applications of artificial intelligence and machine learning in the analysis of future energy transitions and climate change mitigation and adaptation.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100211"},"PeriodicalIF":13.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the employment of artificial intelligence and machine learning to decipher strategic responses to incidences of climate change and to inform the management of energy systems. Given the increasing global dependence on sustainable and efficient energy solutions and the rise of artificial intelligence and machine learning, it has become imperative to evaluate existing routines in energy and climate change modeling to identify areas for further application. The process of conducting a systematic review of the contemporary literature highlights significant advances in optimization and predictive analytics within energy and climate change modeling systems driven by artificial intelligence and machine learning. This paper contributes to cutting-edge research on energy innovation, i.e., through the examination of the applications of artificial intelligence and machine learning in energy modeling and climate change assessments. The article bridges the gaps between research, development, and implementation with significant insights into the broader applications of artificial intelligence and machine learning in the analysis of future energy transitions and climate change mitigation and adaptation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Reinforcement learning for vehicle-to-grid: A review Advancements and future outlook of Artificial Intelligence in energy and climate change modeling Advancing building facade solar potential assessment through AIoT, GIS, and meteorology synergy Integrating water availability for electrolysis into energy system modeling A review of participatory modelling techniques for energy transition scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1