Integrated analyses uncover new features of atypical memory B cells and novel targets for intervention

IF 2.5 4区 医学 Q3 IMMUNOLOGY Immunobiology Pub Date : 2025-01-30 DOI:10.1016/j.imbio.2025.152877
Fuli Fan , Shubei Liu , Bin Wang , Xiaojian Song , Wei Wang
{"title":"Integrated analyses uncover new features of atypical memory B cells and novel targets for intervention","authors":"Fuli Fan ,&nbsp;Shubei Liu ,&nbsp;Bin Wang ,&nbsp;Xiaojian Song ,&nbsp;Wei Wang","doi":"10.1016/j.imbio.2025.152877","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Atypical memory B (AMB) is a novel subset of B lymphocytes, but its immune features and pathogenetic roles in systemic rheumatic diseases are still largely elusive. This study aimed to characterize transcriptomic features, immune phenotypes and potential signaling pathways of AMB, and also to confirm its alternations in systemic rheumatic diseases via combined transcriptome analyses.</div></div><div><h3>Method</h3><div>B cell subsets and their transcriptomic signatures were identified via analyses of single cell RNA-sequencing (scRNA-seq) data. Functional characterization of AMB was performed with bioinformatics and CyTOF-based phenotyping. Alternation of AMB in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SjS) was evaluated via bioinformatic approaches.</div></div><div><h3>Result</h3><div>A total of 11 B cell subsets including AMB were identified through scRNA-seq transcriptome analyses. Both transcriptome analyses and CyTOF-based immune phenotyping confirmed that AMB had increased levels of TBX21 (T-bet), ITGAX (CD11c), CD19, CD20 and CXCR3 (<em>P</em> &lt; 0.05), and it had decreased expressions of CD27, CD38, CXCR4, CXCR5 and CD62L (P &lt; 0.05). More than 50 % of T-bet<sup>+</sup> B cells did not express CD11c, and more than 30 % expressed CD27. AMB was characterized by activated mTORC1 signaling and increased p-P38 level (<em>P</em> &lt; 0.05). AMB transcriptional signature was significantly enriched in the peripheral blood and disease tissues of patients of SLE, RA and SjS (P &lt; 0.05), suggesting the expanded AMB cells in those patients.</div></div><div><h3>Conclusion</h3><div>This study defines the transcriptomic signature, immune phenotypes and potential signaling pathways of AMB, and also confirms the involvement of AMB in systemic rheumatic diseases including SLE, RA and SjS via transcriptomic approaches. mTORC1 signaling and P38/MAPK signaling are promising therapeutic targets for systemic rheumatic diseases mediated by AMB.</div></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"230 2","pages":"Article 152877"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298525000117","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Atypical memory B (AMB) is a novel subset of B lymphocytes, but its immune features and pathogenetic roles in systemic rheumatic diseases are still largely elusive. This study aimed to characterize transcriptomic features, immune phenotypes and potential signaling pathways of AMB, and also to confirm its alternations in systemic rheumatic diseases via combined transcriptome analyses.

Method

B cell subsets and their transcriptomic signatures were identified via analyses of single cell RNA-sequencing (scRNA-seq) data. Functional characterization of AMB was performed with bioinformatics and CyTOF-based phenotyping. Alternation of AMB in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SjS) was evaluated via bioinformatic approaches.

Result

A total of 11 B cell subsets including AMB were identified through scRNA-seq transcriptome analyses. Both transcriptome analyses and CyTOF-based immune phenotyping confirmed that AMB had increased levels of TBX21 (T-bet), ITGAX (CD11c), CD19, CD20 and CXCR3 (P < 0.05), and it had decreased expressions of CD27, CD38, CXCR4, CXCR5 and CD62L (P < 0.05). More than 50 % of T-bet+ B cells did not express CD11c, and more than 30 % expressed CD27. AMB was characterized by activated mTORC1 signaling and increased p-P38 level (P < 0.05). AMB transcriptional signature was significantly enriched in the peripheral blood and disease tissues of patients of SLE, RA and SjS (P < 0.05), suggesting the expanded AMB cells in those patients.

Conclusion

This study defines the transcriptomic signature, immune phenotypes and potential signaling pathways of AMB, and also confirms the involvement of AMB in systemic rheumatic diseases including SLE, RA and SjS via transcriptomic approaches. mTORC1 signaling and P38/MAPK signaling are promising therapeutic targets for systemic rheumatic diseases mediated by AMB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunobiology
Immunobiology 医学-免疫学
CiteScore
5.00
自引率
3.60%
发文量
108
审稿时长
55 days
期刊介绍: Immunobiology is a peer-reviewed journal that publishes highly innovative research approaches for a wide range of immunological subjects, including • Innate Immunity, • Adaptive Immunity, • Complement Biology, • Macrophage and Dendritic Cell Biology, • Parasite Immunology, • Tumour Immunology, • Clinical Immunology, • Immunogenetics, • Immunotherapy and • Immunopathology of infectious, allergic and autoimmune disease.
期刊最新文献
Preclinical models of immune checkpoint inhibitors-related interstitial pneumonia for anti-PD1 tumor immunotherapy Shared pyroptosis pathways and crosstalk genes underpin inflammatory links between periodontitis and atherosclerosis Expression of human superoxide dismutase (SOD) 1 G93A and chlorovirus ATCV-1 SOD increases the response of macrophages to inflammatory stimulants, including ATCV-1 major capsid protein glycans Regulation of FOXM1 by HDAC3 Inhibition Ameliorates Macrophage Endoplasmic Reticulum stress and Apoptosis in Mycobacterium tuberculosis Infection The Autoimmune Profiles in the Etiopathogenesis of Granulomatous Lobular Mastitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1