A lightweight SIF-based crop yield estimation model: A case study of Australian wheat

IF 5.6 1区 农林科学 Q1 AGRONOMY Agricultural and Forest Meteorology Pub Date : 2025-02-11 DOI:10.1016/j.agrformet.2025.110439
Jinru Xue , Alfredo Huete , Zhunqiao Liu , Sicong Gao , Xiaoliang Lu
{"title":"A lightweight SIF-based crop yield estimation model: A case study of Australian wheat","authors":"Jinru Xue ,&nbsp;Alfredo Huete ,&nbsp;Zhunqiao Liu ,&nbsp;Sicong Gao ,&nbsp;Xiaoliang Lu","doi":"10.1016/j.agrformet.2025.110439","DOIUrl":null,"url":null,"abstract":"<div><div>As Australia's primary staple and export crop, wheat necessitates reliable yield mapping to ensure timely alerts about food insecurity. Conventional crop yields are estimated using either process-based or statistical models, but both face challenges in large-scale application due to the extensive data required. Recent studies have shown that the gross primary production (GPP) of plants can be mechanistically estimated from the fraction of open PSII reaction centers (<em>q</em><sub>L</sub>), solar-induced chlorophyll fluorescence (SIF), and readily accessible meteorological datasets including air temperature (<em>T</em><sub>air</sub>), dew-point temperature, and soil water content. <em>q</em><sub>L</sub> can be modeled as a function of SIF and <em>T</em><sub>air</sub>. Along with these theoretical advances, the resolution of satellite SIF has greatly improved, boosting the potential for accurate large-scale crop yield estimation. In this study, we develop a SIF-based lightweight crop model which uses <em>q</em><sub>L</sub> and SIF to track crop GPP. This approach allows for a direct mechanistic estimation of GPP without the need to explicitly account for numerous complex agro-climatic processes. We apply this model to estimate Australian wheat yields from 2019 to 2022. The model exhibits strong predictive power, explaining 86 % of wheat production variance at the regional level (RMSE: 91 kilotons, rRMSE: 7.24 %) and 91 % at the state level (RMSE: 1509 kilotons, rRMSE: 14.13 %). Australian wheat yields exhibit a positive correlation with soil water content and vapor pressure deficit (VPD) when VPD remains below 0.80 kPa. However, the correlation turns negative once VPD exceeds this threshold. We also identify the main sources of error in estimating wheat production as: (1) inaccuracies in estimating the harvested area of wheat, and (2) the relatively low spatial resolution of current satellite SIF data. Our model, with its lightweight design and its ability to mechanistically estimate crop photosynthetic CO<sub>2</sub> assimilation, offers a promising, novel framework for practical, large-scale crop yield mapping.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"364 ","pages":"Article 110439"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000590","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

As Australia's primary staple and export crop, wheat necessitates reliable yield mapping to ensure timely alerts about food insecurity. Conventional crop yields are estimated using either process-based or statistical models, but both face challenges in large-scale application due to the extensive data required. Recent studies have shown that the gross primary production (GPP) of plants can be mechanistically estimated from the fraction of open PSII reaction centers (qL), solar-induced chlorophyll fluorescence (SIF), and readily accessible meteorological datasets including air temperature (Tair), dew-point temperature, and soil water content. qL can be modeled as a function of SIF and Tair. Along with these theoretical advances, the resolution of satellite SIF has greatly improved, boosting the potential for accurate large-scale crop yield estimation. In this study, we develop a SIF-based lightweight crop model which uses qL and SIF to track crop GPP. This approach allows for a direct mechanistic estimation of GPP without the need to explicitly account for numerous complex agro-climatic processes. We apply this model to estimate Australian wheat yields from 2019 to 2022. The model exhibits strong predictive power, explaining 86 % of wheat production variance at the regional level (RMSE: 91 kilotons, rRMSE: 7.24 %) and 91 % at the state level (RMSE: 1509 kilotons, rRMSE: 14.13 %). Australian wheat yields exhibit a positive correlation with soil water content and vapor pressure deficit (VPD) when VPD remains below 0.80 kPa. However, the correlation turns negative once VPD exceeds this threshold. We also identify the main sources of error in estimating wheat production as: (1) inaccuracies in estimating the harvested area of wheat, and (2) the relatively low spatial resolution of current satellite SIF data. Our model, with its lightweight design and its ability to mechanistically estimate crop photosynthetic CO2 assimilation, offers a promising, novel framework for practical, large-scale crop yield mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
期刊最新文献
Vapor pressure deficit dominates dryness stress on forest biomass carbon in China under global warming A lightweight SIF-based crop yield estimation model: A case study of Australian wheat Drying-rewetting cycles decrease temperature sensitivity of soil organic matter decomposition Snow depth and spring temperature dominate the spring phenological shifts and control growing season dynamics on the Tibetan Plateau Evaluation of spatial and temporal variability in Sentinel-2 surface reflectance on a rice paddy landscape
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1