Yukun Chang , Wenyuan Zhou , Yanhui Chen , Guangshun Ran , Fangyan Cui , Zicong Yang , Hui Song , Jinshu Wang , Hongyi Li
{"title":"Oxygen vacancies in ultrathin BiOCl nanosheets induced Pt for enhanced methanol oxidation","authors":"Yukun Chang , Wenyuan Zhou , Yanhui Chen , Guangshun Ran , Fangyan Cui , Zicong Yang , Hui Song , Jinshu Wang , Hongyi Li","doi":"10.1016/j.psep.2025.106866","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient and stable catalysts for methanol oxidation reaction (MOR) is urgent for economic development and energy scarcity. Herein, platinum (Pt) catalyst was planted on carbon nanotubes crosslinked BiOCl ultrathin nanosheets whose (001) facets enriched with oxygen vacancies. It has been found that he oxygen vacancies not only can enhance the electrical conductivity and the adsorption capability, but also can stabilize Pt due to strong metal-support interaction. The catalyst exhibits a mass activity of 2.39 A mg<sub>Pt</sub><sup>−1</sup>, four times higher than that of the benchmark PtC. Moreover, its stability has increased by 54 times compared to PtC. Such a superior electrochemical activity is attributed to the enhancement of OH* adsorption dominantly, which is considered as the catalytically active species. Additionally, the density functional theory calculation is employed to explore the methanol oxidation mechanism with assistant of in-situ Raman test. The valuable formic acid may be produced rather than CO<sub>2</sub>, which is expected to be applied to direct methanol fuel cells while generating additional economic benefits.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"196 ","pages":"Article 106866"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582025001338","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient and stable catalysts for methanol oxidation reaction (MOR) is urgent for economic development and energy scarcity. Herein, platinum (Pt) catalyst was planted on carbon nanotubes crosslinked BiOCl ultrathin nanosheets whose (001) facets enriched with oxygen vacancies. It has been found that he oxygen vacancies not only can enhance the electrical conductivity and the adsorption capability, but also can stabilize Pt due to strong metal-support interaction. The catalyst exhibits a mass activity of 2.39 A mgPt−1, four times higher than that of the benchmark PtC. Moreover, its stability has increased by 54 times compared to PtC. Such a superior electrochemical activity is attributed to the enhancement of OH* adsorption dominantly, which is considered as the catalytically active species. Additionally, the density functional theory calculation is employed to explore the methanol oxidation mechanism with assistant of in-situ Raman test. The valuable formic acid may be produced rather than CO2, which is expected to be applied to direct methanol fuel cells while generating additional economic benefits.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.