ADAMTS13 attenuates renal fibrosis by suppressing thrombospondin 1 mediated TGF-β1/Smad3 activation

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Toxicology and applied pharmacology Pub Date : 2025-02-08 DOI:10.1016/j.taap.2025.117260
Jie Guo , Suhan Zhou , Honghong Wang , Xingyu Qiu , Fang Dong , Shan Jiang , Nan Xu , Yu Cui , Ruisheng Liu , Pengyun Li , Zufu Ma , Liang Zhao , En Yin Lai
{"title":"ADAMTS13 attenuates renal fibrosis by suppressing thrombospondin 1 mediated TGF-β1/Smad3 activation","authors":"Jie Guo ,&nbsp;Suhan Zhou ,&nbsp;Honghong Wang ,&nbsp;Xingyu Qiu ,&nbsp;Fang Dong ,&nbsp;Shan Jiang ,&nbsp;Nan Xu ,&nbsp;Yu Cui ,&nbsp;Ruisheng Liu ,&nbsp;Pengyun Li ,&nbsp;Zufu Ma ,&nbsp;Liang Zhao ,&nbsp;En Yin Lai","doi":"10.1016/j.taap.2025.117260","DOIUrl":null,"url":null,"abstract":"<div><div>Renal fibrosis is a common pathologic pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). Its mechanisms are unclear and it lacks effective therapy. Thrombospondin 1 (TSP1) mediated transforming growth factor-β1 (TGF-β1) activation was confirmed to promote renal fibrosis. Recently, a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), was reported to inhibit Thrombospondin 1 (TSP1) mediated Ca<sup>2+</sup> signaling in the myocardial cell, besides its cleavage of von Willebrand factor (VWF). Therefore, we hypothesized that ADAMTS13 might protect against renal fibrosis by inhibiting TSP1-mediated TGF-β1 activation. In this study, clinical data on renal fibrosis and healthy controls were collected. Renal fibrosis models were established both in vivo and in vitro. In vivo, mice underwent unilateral ureteral obstruction (UUO) for 14 days. In vitro, human proximal tubular epithelial cells (HK−2) were exposed to TGF-β1. The results showed that the expression of ADAMTS13 was decreased accompanied by the increased expression of TSP1 in patients with renal fibrosis and renal fibrosis models in vivo and in vitro. The administration of rhADAMTS13 reduced proteinuria and renal fibrosis in UUO mice. rhADAMTS13 inhibited the expression of TSP1 and the activation of TGF-β1/Smad signaling pathway. The knockdown of ADAMTS13 exhibited a contrary result. The regulation of TSP1 directly affected the protective role of ADAMTS13 in renal fibrosis. Moreover, rhADAMTS13 attenuated inflammation induced by UUO. In conclusion, ADAMTS13 attenuates renal fibrosis induced by UUO. ADAMTS13 exerts its protective role by inhibiting TGF-β1 /Smad signaling via TSP1.</div></div><div><h3>New and noteworthy</h3><div>ADAMTS13 may be used as a novel molecular marker and a new therapeutic target for renal fibrosis. In this paper, ADAMTS13 was found to have an antifibrotic effect independent of its cleavage of VWF.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"496 ","pages":"Article 117260"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000365","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Renal fibrosis is a common pathologic pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). Its mechanisms are unclear and it lacks effective therapy. Thrombospondin 1 (TSP1) mediated transforming growth factor-β1 (TGF-β1) activation was confirmed to promote renal fibrosis. Recently, a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), was reported to inhibit Thrombospondin 1 (TSP1) mediated Ca2+ signaling in the myocardial cell, besides its cleavage of von Willebrand factor (VWF). Therefore, we hypothesized that ADAMTS13 might protect against renal fibrosis by inhibiting TSP1-mediated TGF-β1 activation. In this study, clinical data on renal fibrosis and healthy controls were collected. Renal fibrosis models were established both in vivo and in vitro. In vivo, mice underwent unilateral ureteral obstruction (UUO) for 14 days. In vitro, human proximal tubular epithelial cells (HK−2) were exposed to TGF-β1. The results showed that the expression of ADAMTS13 was decreased accompanied by the increased expression of TSP1 in patients with renal fibrosis and renal fibrosis models in vivo and in vitro. The administration of rhADAMTS13 reduced proteinuria and renal fibrosis in UUO mice. rhADAMTS13 inhibited the expression of TSP1 and the activation of TGF-β1/Smad signaling pathway. The knockdown of ADAMTS13 exhibited a contrary result. The regulation of TSP1 directly affected the protective role of ADAMTS13 in renal fibrosis. Moreover, rhADAMTS13 attenuated inflammation induced by UUO. In conclusion, ADAMTS13 attenuates renal fibrosis induced by UUO. ADAMTS13 exerts its protective role by inhibiting TGF-β1 /Smad signaling via TSP1.

New and noteworthy

ADAMTS13 may be used as a novel molecular marker and a new therapeutic target for renal fibrosis. In this paper, ADAMTS13 was found to have an antifibrotic effect independent of its cleavage of VWF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
期刊最新文献
Isonardosinone attenuates osteoclastogenesis and OVX-induced bone loss via the MAPK/NF-κB pathway Targeting high mobility group protein B2 exerts antiproliferative effects in hypoxic pulmonary hypertension by modulating miR-21 Magnolin ameliorates acetaminophen-induced liver injury in mice via modulating the MAPK pathway and lipid metabolism Sodium taurocholate co-transporting polypeptide deficiency attenuates acetaminophen-induced hepatotoxicity via regulating expression of drug metabolism enzymes in mice Nrf2 deficiency aggravates hepatic cadmium accumulation, inflammatory response and subsequent injury induced by chronic cadmium exposure in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1