{"title":"A novel anti-mouse CCR7 monoclonal antibody, C7Mab-7, demonstrates high sensitivity in flow cytometry, western blot, and immunohistochemistry","authors":"Hiroyuki Satofuka, Hiroyuki Suzuki, Tomohiro Tanaka, Rena Ubukata, Miu Hirose, Haruto Yamamoto, Yu Kaneko, Shiori Fujisawa, Guanjie Li, Mika K. Kaneko, Yukinari Kato","doi":"10.1016/j.bbrep.2025.101948","DOIUrl":null,"url":null,"abstract":"<div><div>C–C chemokine receptor type 7 (CCR7) is a member of the G protein-coupled receptor family and functions as a lymph node-homing receptor for immune cells. Upon ligand binding, CCR7 promotes the migration of immune cells to secondary lymphoid organs. In cancers, CCR7 has been revealed as a critical molecule in lymph node metastasis. Consequently, anti-CCR7 monoclonal antibodies (mAbs) have been developed as cancer therapeutic agents. In this study, we established an anti-mouse CCR7 (mCCR7) mAb, C<sub>7</sub>Mab-7 (rat IgG<sub>1</sub>, kappa) using the Cell-Based Immunization and Screening (CBIS) method. C<sub>7</sub>Mab-7 demonstrated high sensitivity in flow cytometry. The dissociation constant (<em>K</em><sub>D</sub>) value of C<sub>7</sub>Mab-7 was determined to be 2.5 × 10⁻⁹ M for mCCR7-overexpressed Chinese hamster ovary-K1 (CHO/mCCR7) cells. Furthermore, C<sub>7</sub>Mab-7 detected mCCR7 with high sensitivity in western blot and immunohistochemistry. C<sub>7</sub>Mab-7, developed by the CBIS method, accelerates the development of CCR7-targeted antibody therapies and cancer diagnostics.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101948"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
C–C chemokine receptor type 7 (CCR7) is a member of the G protein-coupled receptor family and functions as a lymph node-homing receptor for immune cells. Upon ligand binding, CCR7 promotes the migration of immune cells to secondary lymphoid organs. In cancers, CCR7 has been revealed as a critical molecule in lymph node metastasis. Consequently, anti-CCR7 monoclonal antibodies (mAbs) have been developed as cancer therapeutic agents. In this study, we established an anti-mouse CCR7 (mCCR7) mAb, C7Mab-7 (rat IgG1, kappa) using the Cell-Based Immunization and Screening (CBIS) method. C7Mab-7 demonstrated high sensitivity in flow cytometry. The dissociation constant (KD) value of C7Mab-7 was determined to be 2.5 × 10⁻⁹ M for mCCR7-overexpressed Chinese hamster ovary-K1 (CHO/mCCR7) cells. Furthermore, C7Mab-7 detected mCCR7 with high sensitivity in western blot and immunohistochemistry. C7Mab-7, developed by the CBIS method, accelerates the development of CCR7-targeted antibody therapies and cancer diagnostics.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.