DeepReducer: A linear transformer-based model for MEG denoising

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-02-08 DOI:10.1016/j.neuroimage.2025.121080
Hui Xu , Li Zheng , Pan Liao , Bingjiang Lyu , Jia-Hong Gao
{"title":"DeepReducer: A linear transformer-based model for MEG denoising","authors":"Hui Xu ,&nbsp;Li Zheng ,&nbsp;Pan Liao ,&nbsp;Bingjiang Lyu ,&nbsp;Jia-Hong Gao","doi":"10.1016/j.neuroimage.2025.121080","DOIUrl":null,"url":null,"abstract":"<div><div>Measuring event-related magnetic fields (ERFs) in magnetoencephalography (MEG) is crucial for investigating perceptual and cognitive information processing in both neuroscience research and clinical practice. However, the magnitude of the ERF in cortical sources is comparable to the noise in a single trial. Consequently, numerous repetitive recordings are needed to distinguish these sources from background noise, requiring lengthy time for data acquisition. Herein, we introduce DeepReducer, a linear transformer-based deep learning model designed to reliably and efficiently denoise ERFs, thereby reducing the number of required trials. DeepReducer was trained on a mix of limited-trial and multi-trial averaged ERFs, employing mean squared error as the loss function to effectively capture and model the complex signal fluctuations inherent in MEG recordings. Validation on both semi-synthetic and experimental task-related MEG data showed that DeepReducer outperforms conventional trial-averaging techniques, significantly improving the signal-to-noise ratio of ERFs and reducing source localization errors. The practical significance of DeepReducer encompasses optimizing MEG data acquisition by reducing participant stress (particularly for patients) and minimizing associated artifacts.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"308 ","pages":"Article 121080"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000825","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring event-related magnetic fields (ERFs) in magnetoencephalography (MEG) is crucial for investigating perceptual and cognitive information processing in both neuroscience research and clinical practice. However, the magnitude of the ERF in cortical sources is comparable to the noise in a single trial. Consequently, numerous repetitive recordings are needed to distinguish these sources from background noise, requiring lengthy time for data acquisition. Herein, we introduce DeepReducer, a linear transformer-based deep learning model designed to reliably and efficiently denoise ERFs, thereby reducing the number of required trials. DeepReducer was trained on a mix of limited-trial and multi-trial averaged ERFs, employing mean squared error as the loss function to effectively capture and model the complex signal fluctuations inherent in MEG recordings. Validation on both semi-synthetic and experimental task-related MEG data showed that DeepReducer outperforms conventional trial-averaging techniques, significantly improving the signal-to-noise ratio of ERFs and reducing source localization errors. The practical significance of DeepReducer encompasses optimizing MEG data acquisition by reducing participant stress (particularly for patients) and minimizing associated artifacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Video communication mitigate feelings of friendliness: A functional near-infrared spectroscopy study Corrigendum to "Specialization for different memory dimensions in brain activity evoked by cued recollection" [NeuroImage 308 (2025) 121068]. EEG Microstate Syntax Analysis: A Review of Methodological Challenges and Advances. A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals. Neural Mechanisms of Intersensory Switching: Evidence for Delayed Sensory Processing and Increased Cognitive Demands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1