Neural Mechanisms of Intersensory Switching: Evidence for Delayed Sensory Processing and Increased Cognitive Demands.

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-02-13 DOI:10.1016/j.neuroimage.2025.121089
Theo Vanneau, Michael Quiquempoix, John J Foxe, Sophie Molholm
{"title":"Neural Mechanisms of Intersensory Switching: Evidence for Delayed Sensory Processing and Increased Cognitive Demands.","authors":"Theo Vanneau, Michael Quiquempoix, John J Foxe, Sophie Molholm","doi":"10.1016/j.neuroimage.2025.121089","DOIUrl":null,"url":null,"abstract":"<p><p>Intersensory switching (IS), the ability to shift attention between different sensory systems, is essential for cognitive flexibility, yet leads to slower responses compared to repeating the same sensory modality. The underlying neural mechanisms of IS remain largely unknown. In this study, high-density EEG was used to investigate these mechanisms in healthy adults (n=53; mean age 26±7.39; 30 female) performing a speeded reaction time (RT) task involving visual and auditory stimuli. Trials were categorized as Repeat (same preceding modality) or Switch (different preceding modality). Switch trials showed slower RTs and delayed sensory responses (N1 and P2 components). Furthermore, across both Repeat and Switch trials, RT correlated with the latency of these neural responses. Additionally, lower alpha-band inter-trial phase coherence (ITPC) in primary sensory regions was noted for Switch compared to Repeat trials, suggesting reduced efficiency of sensory processing. Greater induced theta activity over fronto-central scalp regions in Switch trials suggested increased cognitive control demands. These findings support a model where the prior stimulus primes the sensory cortex for faster processing of Repeat trials, while Switch trials lead to heightened cognitive resources for adjustment, likely reflecting attentional reallocation mediated by the anterior cingulate cortex (ACC). The consistent effects across auditory and visual modalities indicate that IS relies on a core, modality-independent mechanism grounded in fundamental principles of sensory and attentional reorganization.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121089"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Intersensory switching (IS), the ability to shift attention between different sensory systems, is essential for cognitive flexibility, yet leads to slower responses compared to repeating the same sensory modality. The underlying neural mechanisms of IS remain largely unknown. In this study, high-density EEG was used to investigate these mechanisms in healthy adults (n=53; mean age 26±7.39; 30 female) performing a speeded reaction time (RT) task involving visual and auditory stimuli. Trials were categorized as Repeat (same preceding modality) or Switch (different preceding modality). Switch trials showed slower RTs and delayed sensory responses (N1 and P2 components). Furthermore, across both Repeat and Switch trials, RT correlated with the latency of these neural responses. Additionally, lower alpha-band inter-trial phase coherence (ITPC) in primary sensory regions was noted for Switch compared to Repeat trials, suggesting reduced efficiency of sensory processing. Greater induced theta activity over fronto-central scalp regions in Switch trials suggested increased cognitive control demands. These findings support a model where the prior stimulus primes the sensory cortex for faster processing of Repeat trials, while Switch trials lead to heightened cognitive resources for adjustment, likely reflecting attentional reallocation mediated by the anterior cingulate cortex (ACC). The consistent effects across auditory and visual modalities indicate that IS relies on a core, modality-independent mechanism grounded in fundamental principles of sensory and attentional reorganization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Video communication mitigate feelings of friendliness: A functional near-infrared spectroscopy study Corrigendum to "Specialization for different memory dimensions in brain activity evoked by cued recollection" [NeuroImage 308 (2025) 121068]. EEG Microstate Syntax Analysis: A Review of Methodological Challenges and Advances. A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals. Neural Mechanisms of Intersensory Switching: Evidence for Delayed Sensory Processing and Increased Cognitive Demands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1