Shi-Heng Bai , Yu Huang , Zhi-Jie Feng , Matthew J. Brzozowski , Yao-Hui Jiang , Ru-Xiong Lei , Chang-Zhi Wu
{"title":"Granitoid genesis and related rare metal mineralization of the Shihuiyao Rb–Ta–Nb deposit in the Southern Great Xing’an Range, NE China","authors":"Shi-Heng Bai , Yu Huang , Zhi-Jie Feng , Matthew J. Brzozowski , Yao-Hui Jiang , Ru-Xiong Lei , Chang-Zhi Wu","doi":"10.1016/j.gr.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>The Shihuiyao deposit, located in the southern Great Xing’an Range (SGXR) in China, is an important Rb–Ta–Nb polymetallic deposit hosted by Li–F-bearing granites in the eastern portion of the Central Asian Orogenic Belt. However, its emplacement history and petrogenesis, and mechanisms of rare metal enrichment remain controversial. This study presents a systemic petrographic, geochronological, mineralogical, and geochemical study on mineralized amazonite-bearing albitized granite, albitized granite, and greisen, as well as barren biotite granite in the Shihuiyao deposit. Uranium–Pb geochronological results for zircon, columbite-group minerals, and cassiterite demonstrate that both emplacement and mineralization occurred between ca. 145–140 Ma. The high TE<sub>1,3</sub> values, and low Zr/Hf and Nb/Ta ratios of the biotite granite suggest that it crystallized from a highly evolved magma. Based on the late-stage crystallization of Fe-rich biotite, the depleted ε<sub>Hf</sub>(t) values of zircon (+6.5 to + 8.3), and the elevated bulk-rock F and alkali contents, it is inferred that the parental magma to the biotite granite originated from the partial melting of residual granulite-facies rocks within the lower crust. The distinct Zr/Hf, K/Rb, and Y/Ho ratios of barren and fertile granitoids suggest that they evolved independently as these ratios typically vary continuously within a magmatic system. The presence of snowball quartz, fluorite, and topaz suggest that the mineralized granites formed within a magmatic–hydrothermal system enriched in Na, F, and H<sub>2</sub>O. Such a Na-, F-, and volatile-rich melt (represented by the magma parental to the ore-bearing granitoids) would have separated from a conventional silicate melt (represented by the magma parental to the biotite granite), generating a scenario in which two immiscible silicate melts were present (melt-melt immiscibility). The increasing bulk-rock concentration of Rb, Ta, and Nb from the barren biotite granite to the fertile (amazonite-bearing) albitized granite indicates that melt–melt immiscible processes led to a significant enrichment of rare metals.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"140 ","pages":"Pages 264-278"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X25000310","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Shihuiyao deposit, located in the southern Great Xing’an Range (SGXR) in China, is an important Rb–Ta–Nb polymetallic deposit hosted by Li–F-bearing granites in the eastern portion of the Central Asian Orogenic Belt. However, its emplacement history and petrogenesis, and mechanisms of rare metal enrichment remain controversial. This study presents a systemic petrographic, geochronological, mineralogical, and geochemical study on mineralized amazonite-bearing albitized granite, albitized granite, and greisen, as well as barren biotite granite in the Shihuiyao deposit. Uranium–Pb geochronological results for zircon, columbite-group minerals, and cassiterite demonstrate that both emplacement and mineralization occurred between ca. 145–140 Ma. The high TE1,3 values, and low Zr/Hf and Nb/Ta ratios of the biotite granite suggest that it crystallized from a highly evolved magma. Based on the late-stage crystallization of Fe-rich biotite, the depleted εHf(t) values of zircon (+6.5 to + 8.3), and the elevated bulk-rock F and alkali contents, it is inferred that the parental magma to the biotite granite originated from the partial melting of residual granulite-facies rocks within the lower crust. The distinct Zr/Hf, K/Rb, and Y/Ho ratios of barren and fertile granitoids suggest that they evolved independently as these ratios typically vary continuously within a magmatic system. The presence of snowball quartz, fluorite, and topaz suggest that the mineralized granites formed within a magmatic–hydrothermal system enriched in Na, F, and H2O. Such a Na-, F-, and volatile-rich melt (represented by the magma parental to the ore-bearing granitoids) would have separated from a conventional silicate melt (represented by the magma parental to the biotite granite), generating a scenario in which two immiscible silicate melts were present (melt-melt immiscibility). The increasing bulk-rock concentration of Rb, Ta, and Nb from the barren biotite granite to the fertile (amazonite-bearing) albitized granite indicates that melt–melt immiscible processes led to a significant enrichment of rare metals.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.