MESO-CMOS Hybrid Circuits With Time-Multiplexing Technique for Energy and Area-Efficient Computing in Memory

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2025-01-16 DOI:10.1109/JXCDC.2025.3530906
Tzuping Huang;Linran Zhao;Yiming Han;Hai Li;Ian A. Young;Yaoyao Jia
{"title":"MESO-CMOS Hybrid Circuits With Time-Multiplexing Technique for Energy and Area-Efficient Computing in Memory","authors":"Tzuping Huang;Linran Zhao;Yiming Han;Hai Li;Ian A. Young;Yaoyao Jia","doi":"10.1109/JXCDC.2025.3530906","DOIUrl":null,"url":null,"abstract":"The magnetoelectric spin orbit (MESO), one of the emerging spin devices, represents a promising alternative to complementary metal-oxide–semiconductor (CMOS) technology. MESO provides dual functionality: each device can perform logic operations while acting as a nonvolatile memory device. MESO also offers advantages, such as an ultralow supply voltage of 100 mV and the potential to vertically integrate with CMOS, which promises significant energy and area efficiency. These features support MESO’s suitability for improving the energy efficiency and area efficiency of computing-in-memory (CIM) circuits. To harness the advantages of MESO in large-scale complex circuit systems, this article presents the development of a MESO-based standard cell library. This library is critical to realize automated design, as it allows the implementation of all the basic CMOS functions with MESO, thereby enabling MESO-CMOS hybrid design in large-scale complex circuits. This article also introduces a highly area-efficient time-multiplexing technique to optimize the complex function inside CIM. Specifically, the multiplier and multiply-and-accumulate (MAC) circuits using the MESO-CMOS hybrid time-multiplexing technique reduce the area by 85% and 81%, respectively, compared to CMOS implementations.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"1-9"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843777","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843777/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetoelectric spin orbit (MESO), one of the emerging spin devices, represents a promising alternative to complementary metal-oxide–semiconductor (CMOS) technology. MESO provides dual functionality: each device can perform logic operations while acting as a nonvolatile memory device. MESO also offers advantages, such as an ultralow supply voltage of 100 mV and the potential to vertically integrate with CMOS, which promises significant energy and area efficiency. These features support MESO’s suitability for improving the energy efficiency and area efficiency of computing-in-memory (CIM) circuits. To harness the advantages of MESO in large-scale complex circuit systems, this article presents the development of a MESO-based standard cell library. This library is critical to realize automated design, as it allows the implementation of all the basic CMOS functions with MESO, thereby enabling MESO-CMOS hybrid design in large-scale complex circuits. This article also introduces a highly area-efficient time-multiplexing technique to optimize the complex function inside CIM. Specifically, the multiplier and multiply-and-accumulate (MAC) circuits using the MESO-CMOS hybrid time-multiplexing technique reduce the area by 85% and 81%, respectively, compared to CMOS implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array Co-Optimization of Power Delivery Network Design for 3-D Heterogeneous Integration of RRAM-Based Compute In-Memory Accelerators 2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1