{"title":"Carbon coated titanium dioxide (CC-TiO2) as an efficient anode material for sodium- ion batteries","authors":"Rahul Kumar, Anagha Pradeep, Parag Bhargava","doi":"10.1007/s40243-025-00298-7","DOIUrl":null,"url":null,"abstract":"<div><p>TiO<sub>2</sub> has attracted a lot of attention as anode material for sodium-ion batteries due to its higher operating voltage, safely and low lost material, but TiO<sub>2</sub> has two main issues, low electronic conductivity and slow solid-state ion diffusion. These issues have been successfully resolved by researchers using carbon coating on TiO<sub>2</sub>. In this work, carbon coated TiO<sub>2</sub> (CC-TiO<sub>2)</sub> nanoparticles have been synthesized by using TiO<sub>2</sub> and sucrose as soluble source of carbon. The carbon coating on TiO<sub>2</sub> particles was formed after heat treatment in inert atmosphere. CC-TiO<sub>2</sub> particles exhibited reversible capacity of 116 mAh g<sup>− 1</sup> at 0.1 C after 50 cycles, and high capacity retention of 77% after 100 cycles in a sodium-ion battery cell. The impressive electrochemical performance of the TiO<sub>2</sub> particles is due to several factors: the small size of the crystallites, the continuous electronic network created by the close contact of individual carbon-coated TiO<sub>2</sub> particles, and the efficient penetration of the mesopores by the electrolyte.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00298-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00298-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
TiO2 has attracted a lot of attention as anode material for sodium-ion batteries due to its higher operating voltage, safely and low lost material, but TiO2 has two main issues, low electronic conductivity and slow solid-state ion diffusion. These issues have been successfully resolved by researchers using carbon coating on TiO2. In this work, carbon coated TiO2 (CC-TiO2) nanoparticles have been synthesized by using TiO2 and sucrose as soluble source of carbon. The carbon coating on TiO2 particles was formed after heat treatment in inert atmosphere. CC-TiO2 particles exhibited reversible capacity of 116 mAh g− 1 at 0.1 C after 50 cycles, and high capacity retention of 77% after 100 cycles in a sodium-ion battery cell. The impressive electrochemical performance of the TiO2 particles is due to several factors: the small size of the crystallites, the continuous electronic network created by the close contact of individual carbon-coated TiO2 particles, and the efficient penetration of the mesopores by the electrolyte.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies