On the Change in the Duration of a Narrow-Band Signal in a Dispersive Medium with Increasing Path Length (Within the Framework of the Method of Moments)
{"title":"On the Change in the Duration of a Narrow-Band Signal in a Dispersive Medium with Increasing Path Length (Within the Framework of the Method of Moments)","authors":"N. S. Bukhman","doi":"10.1007/s11141-025-10363-w","DOIUrl":null,"url":null,"abstract":"<p>We consider the one-dimensional problem of propagation of a narrow-band signal in a homogeneous dispersive medium. Within the framework of the method of moments, simple relations are obtained which permit one to use integration of smooth (non-oscillatory) functions to find the midpoint and r.m. s. duration of an arbitrary signal at an arbitrary point on the path without any additional approximations. It is shown that if the absorption dispersion is negligible, the square of the r.m. s. duration of the signal depends on the path length according to the parabolic law, i.e., it has a single minimum (“focus” of the signal). The possibility of reducing the duration (and the corresponding power increase) of linear frequency-modulated (LFM) signals during propagation in a dispersive medium is considered. For a space-limited dispersive medium, using the example of a weakly colliding plasma, estimates are obtained for the maximum possible (for a given path length) reduction of the signal duration and increase in its power, as well as for the initial signal parameters at which these capabilities are realized.</p>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":"67 2","pages":"166 - 180"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-025-10363-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the one-dimensional problem of propagation of a narrow-band signal in a homogeneous dispersive medium. Within the framework of the method of moments, simple relations are obtained which permit one to use integration of smooth (non-oscillatory) functions to find the midpoint and r.m. s. duration of an arbitrary signal at an arbitrary point on the path without any additional approximations. It is shown that if the absorption dispersion is negligible, the square of the r.m. s. duration of the signal depends on the path length according to the parabolic law, i.e., it has a single minimum (“focus” of the signal). The possibility of reducing the duration (and the corresponding power increase) of linear frequency-modulated (LFM) signals during propagation in a dispersive medium is considered. For a space-limited dispersive medium, using the example of a weakly colliding plasma, estimates are obtained for the maximum possible (for a given path length) reduction of the signal duration and increase in its power, as well as for the initial signal parameters at which these capabilities are realized.
期刊介绍:
Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as:
Radio astronomy;
Plasma astrophysics;
Ionospheric, atmospheric and oceanic physics;
Radiowave propagation;
Quantum radiophysics;
Pphysics of oscillations and waves;
Physics of plasmas;
Statistical radiophysics;
Electrodynamics;
Vacuum and plasma electronics;
Acoustics;
Solid-state electronics.
Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April.
All articles are peer-reviewed.