Role of E × B Drift in Divertor Detachment Control via Boron Powder Injection on EAST

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Journal of Fusion Energy Pub Date : 2025-02-10 DOI:10.1007/s10894-025-00477-4
Lei Peng, Zhen Sun, Jizhong Sun, Rajesh Maingi, Guozhang Jia, Xavier Bonnin, Fang Gao, GuiZhong Zuo, Wei Xu, Weikang Wang, Jinyuan Liu
{"title":"Role of E × B Drift in Divertor Detachment Control via Boron Powder Injection on EAST","authors":"Lei Peng,&nbsp;Zhen Sun,&nbsp;Jizhong Sun,&nbsp;Rajesh Maingi,&nbsp;Guozhang Jia,&nbsp;Xavier Bonnin,&nbsp;Fang Gao,&nbsp;GuiZhong Zuo,&nbsp;Wei Xu,&nbsp;Weikang Wang,&nbsp;Jinyuan Liu","doi":"10.1007/s10894-025-00477-4","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of B powder injection on plasma detachment about EAST discharge were studied by using SOLPS-ITER code package with the effects of <b><i>E</i></b> × <b><i>B</i></b> drifts considered. The simulation results show that plasma detachment occurs at the inner target in favourable toroidal magnetic field (<b><i>B</i></b><sub><i>t</i></sub>) direction at a relatively low B powder flow rate, one order of magnitude lower than that at the outer target. In a similar scenario with unfavourable <b><i>B</i></b><sub><i>t</i></sub>, it is found that the detachment thresholds of B flow rate for both the inner and outer targets are close and of the same order as that for the outer target with favourable <b><i>B</i></b><sub><i>t</i></sub>. In favourable <b><i>B</i></b><sub><i>t</i></sub> direction at B powder flow rate of 1.2 × 10<sup>21</sup> atoms/s, a localized, broadened high-density region is formed near the inner target benefitted by the injection location and the <b><i>E</i></b> × <b><i>B</i></b> drift, and a radiation-intensified zone, mostly contributed by B<sup>1+</sup> and B<sup>2+</sup>, occurs there. The <b><i>E</i></b> × <b><i>B</i></b> drift facilitates plasma detachment at the inner target and simultaneously amplifies the in–out divertor asymmetry. In addition, the simulation results with three different injection locations show that the injection from outer strike point leads to the lowest <i>Z</i><sub><i>eff</i></sub> inside the separatrix and has an intermediate flow rate for detachment at the outer target, comparing with the X-point and upstream locations.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00477-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of B powder injection on plasma detachment about EAST discharge were studied by using SOLPS-ITER code package with the effects of E × B drifts considered. The simulation results show that plasma detachment occurs at the inner target in favourable toroidal magnetic field (Bt) direction at a relatively low B powder flow rate, one order of magnitude lower than that at the outer target. In a similar scenario with unfavourable Bt, it is found that the detachment thresholds of B flow rate for both the inner and outer targets are close and of the same order as that for the outer target with favourable Bt. In favourable Bt direction at B powder flow rate of 1.2 × 1021 atoms/s, a localized, broadened high-density region is formed near the inner target benefitted by the injection location and the E × B drift, and a radiation-intensified zone, mostly contributed by B1+ and B2+, occurs there. The E × B drift facilitates plasma detachment at the inner target and simultaneously amplifies the in–out divertor asymmetry. In addition, the simulation results with three different injection locations show that the injection from outer strike point leads to the lowest Zeff inside the separatrix and has an intermediate flow rate for detachment at the outer target, comparing with the X-point and upstream locations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
期刊最新文献
Retraction Note: Effects of Resonant Helical Field (RHF) on Equilibrium Properties of IR-T1 Tokamak Plasma Retraction Note: Estimating Time Dependence of Edge Plasma Turbulence in IR-T1 Tokamak Role of E × B Drift in Divertor Detachment Control via Boron Powder Injection on EAST Retraction Note: Investigation of Tokamak Plasma MHD Activity Using FFT Analysis of Mirnov Coils Oscillations Retraction Note: Effect of Resonant Helical Field (RHF) on Runaway Electrons in Tokamaks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1