Extensive remodeling during Chlamydomonas reinhardtii zygote maturation leads to highly resistant zygospores

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-02-09 DOI:10.1111/tpj.17238
Martim Cardador, Stephanie Krüger, Susanne Dunker, Alexandra Brakel, Ralf Hoffmann, Raimund Nagel, Torsten Jakob, Reimund Goss, Severin Sasso
{"title":"Extensive remodeling during Chlamydomonas reinhardtii zygote maturation leads to highly resistant zygospores","authors":"Martim Cardador,&nbsp;Stephanie Krüger,&nbsp;Susanne Dunker,&nbsp;Alexandra Brakel,&nbsp;Ralf Hoffmann,&nbsp;Raimund Nagel,&nbsp;Torsten Jakob,&nbsp;Reimund Goss,&nbsp;Severin Sasso","doi":"10.1111/tpj.17238","DOIUrl":null,"url":null,"abstract":"<p>The unicellular soil alga <i>Chlamydomonas reinhardtii</i> forms diploid zygotes during its sexual cycle. The process of a zygote maturing into a highly resistant zygospore remains poorly understood despite its importance for survival under adverse environmental conditions. Here we describe the detailed timeline of morphological and physiological changes during zygote maturation in darkness on ammonium-free Tris-acetate-phosphate agar plates. The formation of a multilayered cell wall is primarily responsible for the increase in cell size in the first few days after zygote formation. Desiccation and freezing tolerance also develop in the period 3–7 days. Photosynthetic and respiratory activity decrease to reach minimal levels after 7–10 days, accompanied by a partial dedifferentiation of the chloroplast that includes chlorophyll degradation followed by the possible disappearance of the pyrenoid. In contrast to the decreasing concentrations of most carotenoids in the first few days after zygote formation, ketocarotenoids can first be detected after 3 days and their accumulation is completed after 10 days. Furthermore, the zygote degrades a large proportion of its starch and enriches oligosaccharides that may serve as osmoprotectants. The storage lipid triacylglycerol is accumulated at the expense of thylakoid membrane lipids, which mirrors the conversion of a metabolically active cell into a dormant spore on the metabolic level. Taken together, zygote maturation is a multifaceted process that yields mature zygospores after ~ 3 weeks. This work sheds light on the complete time course of the remodeling of a photosynthetically active eukaryotic cell into a dormant, highly resistant spore.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17238","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The unicellular soil alga Chlamydomonas reinhardtii forms diploid zygotes during its sexual cycle. The process of a zygote maturing into a highly resistant zygospore remains poorly understood despite its importance for survival under adverse environmental conditions. Here we describe the detailed timeline of morphological and physiological changes during zygote maturation in darkness on ammonium-free Tris-acetate-phosphate agar plates. The formation of a multilayered cell wall is primarily responsible for the increase in cell size in the first few days after zygote formation. Desiccation and freezing tolerance also develop in the period 3–7 days. Photosynthetic and respiratory activity decrease to reach minimal levels after 7–10 days, accompanied by a partial dedifferentiation of the chloroplast that includes chlorophyll degradation followed by the possible disappearance of the pyrenoid. In contrast to the decreasing concentrations of most carotenoids in the first few days after zygote formation, ketocarotenoids can first be detected after 3 days and their accumulation is completed after 10 days. Furthermore, the zygote degrades a large proportion of its starch and enriches oligosaccharides that may serve as osmoprotectants. The storage lipid triacylglycerol is accumulated at the expense of thylakoid membrane lipids, which mirrors the conversion of a metabolically active cell into a dormant spore on the metabolic level. Taken together, zygote maturation is a multifaceted process that yields mature zygospores after ~ 3 weeks. This work sheds light on the complete time course of the remodeling of a photosynthetically active eukaryotic cell into a dormant, highly resistant spore.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
Posttranslational regulation of plant membrane transporters Arabidopsis thaliana Zn transporter genes ZIP3 and ZIP5 provide the main Zn uptake route and act redundantly to face Zn deficiency Defining the heterogeneous composition of Arabidopsis thylakoid membrane Rice glycosyltransferase UGT706F1 functions in heat tolerance through glycosylating flavonoids under the regulation of transcription factor MYB61 Extensive remodeling during Chlamydomonas reinhardtii zygote maturation leads to highly resistant zygospores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1